
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Metaheuristic Algorithms for Optimization Problems
Sharing Permutative Representation

Disertation thesis

Ing. David Woller

Ph.D. programme: Informatics
Supervisor: RNDr. Miroslav Kulich, Ph.D.

Prague, March 2024

Acknowledgements

I would like to thank my supervisor, Mirek Kulich, for his expert guidance and always
available assistance during the almost five years of my PhD studies. I am grateful to the
Intelligent and Mobile Robotics (IMR) laboratory for co-funding my work and providing
a friendly and supportive environment. I also appreciate my students and collaborators
Jakub Rada, Jan Hrazd́ıra, Tomáš Hromada and David Pažout for implementing some
of my ideas and trusting me with supervising their thesis. Special thanks to my closest
colleagues Viktor Kozák, Jan Mikula, Luká Bertl, David Zahrádka, and Frank, who made
my PhD a mostly pleasant experience. Finally, I would like to thank my family for all
their support.

My PhD studies were funded by taxpayers’ money through the PhD scholarship. The
Czech Technical University in Prague supported my work with grants SGS18/206/OH-
K3/3T/37, SGS21/185/OHK3/3T/37 and SGS23/122/OHK3/2T/13. The presented re-
search work was also supported by the European Regional Development Fund under the
project Robotics for Industry 4.0 (registration no. CZ.02.1.01/0.0/0.0/15003/0000470),
European Union’s Horizon 2020 research and innovation program under grant agreement
No 688117, and by the Czech Science Foundation (GACR) under Grant Agreements
19-26143X and 23-05104S. Computational resources were provided by the e-INFRA CZ
project (ID:90140), supported by the Ministry of Education, Youth and Sports of the
Czech Republic. My research internship was co-funded by the EU Erasmus+ program
and Avignon University. Other activities abroad were supported by the “Nadačńı fond
ČVUT Stanislava Hanzla” and “Nadace Nadáńı Josefa, Marie a Zdeňky Hlávkových”
foundations.

ii

Copyright

This thesis is a compilation of several journal articles and conference proceedings published
during my PhD studies. The included publications are presented in accordance with the
copyrights of Springer Nature, Elsevier, and IEEE for author reuse within their thesis.
The works are protected by the copyrights of respective publishers and can not be further
reprinted without the permission of the publishers.

© Springer Nature 2021, 2022, 2023
© Elsevier 2023
© IEEE 2023

iii

Abstract

Developing metaheuristic algorithms for computationally challenging combinatorial opti-
mization problems is an important research area in operational research and related fields
of computer science. In this thesis, we address a wide class of optimization problems
with permutative representation, that is, problems whose solutions can be encoded as an
ordered sequence of nodes from a given set. Their optimization lies in selecting the best
subset and finding the best order of these nodes with respect to a problem-specific objec-
tive function and constraints. This thesis is a compilation of six core publications, three
of which are journal articles. The thesis consists of two complementary research streams,
each of which is covered by three core publications. The first stream is dedicated to devel-
oping problem-specific metaheuristic algorithms for various recently formulated problems
with permutative representation. These problems are path planning for a mobile robot
localizing radiation sources, route planning for a fleet of electric vehicles, and maintenance
scheduling of a power transmission network. The first problem is motivated by an im-
plemented robotic application, while the other two are novel optimization problems from
international competitions, most notably the ROADEF Challenge. For each problem, we
propose a specialized algorithm based on an established metaheuristic, such as Variable
Neighborhood Search or Large Neighborhood Search, for which we design the necessary
problem-specific components. The algorithms developed are either the first method ad-
dressing a highly specific newly formulated problem or belong among the state of the
art, as documented by their success in the competitions. In the second research stream,
we propose the generic metaheuristic solver for optimization problems with permutative
representation, which is a tool that aims to combine the versatility of established Integer
Programming solvers and the scalability of specialized metaheuristic algorithms for the
studied class of problems. The solver is successfully benchmarked on several classical
optimization problems and is subsequently deployed to some newly proposed problems in
the follow-up work, inspired by an application in autonomous mining. In this work, we
introduce the concept of self-deleting graphs and propose the variants of Travelling Sales-
person Problem and Hamiltonian Cycle Problem on these graphs. The thesis is concluded
by proposing and solving the problem of finding a placement of circles along a given tour,
the Path-Conforming Circle Placement Problem (PCCP), which addresses another aspect
of the motivating mining application.

Keywords: permutative representation, metaheuristic algorithm, generic solver, radia-
tion search, Electric Vehicle Routing Problem, Transmission Maintenance Scheduling, self-
deleting graph, Travelling Salesperson Problem, Hamiltonian Cycle Problem, autonomous
mining, Path-Conforming Circle Placement.

iv

Abstrakt

Vývoj metaheuristických algoritmů pro výpočetně náročné problémy z kombinatorické
optimalizace je d̊uležitou výzkumnou oblast́ı v operačńım výzkumu a př́ıbuzných oblastech
poč́ıtačových věd. V této práci se věnujeme široké tř́ıdě optimalizačńıch problémů s per-
mutativńı reprezentaćı, tedy problémům, jejichž řešeńı lze reprezentovat uspořádanou
sekvenćı prvk̊u z dané množiny. Optimalizace této tř́ıdy problémů spoč́ıvá ve volbě vhodné
podmnožiny prvk̊u a jejich uspořádáńı tak, aby byly splněny všechny omezuj́ıćı podmı́nky
a minimalizována kriteriálńı funkce konkrétńıho problému. Tato práce je prezentována
formou kompilace šesti hlavńıch publikaćı, z nichž tři jsou publikace časopisecké. Práce
sestává ze dvou doplňuj́ıćıch se výzkumných směr̊u, z nichž každý je pokryt třemi články.
Prvńı směr se věnuje návrhu specializovaných metaheuristikých algoritmů pro r̊uzné
aktuálně formulované problémy s permutativńı reprezentaćı. Tyto problémy jsou: plánová-
ńı pohybu mobilńıho robotu lokalizuj́ıćıho zdroje zářeńı, plánováńı cest pro flotilu elek-
trických vozidel a rozvrhováńı údržby přenosové śıtě. Prvńı problém je motivován real-
izaćı reálné robotické aplikace, zat́ımco zbylé dva jsou aktuálńı optimalizačńı problémy
nově formulované v rámci mezinárodńıch soutěž́ı, předevš́ım ROADEF Challenge. Pro
každý z těchto problémů navrhujeme specializovaný algoritmus postavený na zavedené
metaheuristice, jako Variable Neighborhood Search nebo Large Neighborhood Search, pro
kterou dále návrhujeme nezbytné specializované komponenty na mı́ru danému problému.
Vyvinuté algoritmy jsou buď prvńı existuj́ıćı metodou řeš́ıćı vysoce specifický nově for-
mulovaný problém, nebo patř́ı mezi nejlepš́ı algoritmy pro řešený problém, jak dokládá
jejich soutěžńı umı́stěńı. Ve druhém výzkumném směru navrhujeme obecný metaheuri-
stický řešič pro optimalizačńı problémy s permutativńı reprezentaćı, což je nástroj maj́ıćı
za ćıl zkombinovat pro danou tř́ıdu problémů univerzalitu zavedených řešič̊u postavených
na celoč́ıselném programováńı a škálovatelnost specializovaných metaheuristických al-
goritmů. Navržený řešič je úspěčně otestován na několika klasických optimalizačńıch
problémech a je následně aplikován v navazuj́ıćım výzkumu, inspirovaným aplikaćı v
autonomńı povrchové těžbě. V tomto výzkumu definujeme koncept takzvaných samo-
mazaćıch graf̊u a formulujeme na nich varianty problému obchodńıho cestuj́ıćıho a problé-
mu hamiltonovské cesty. Práce je zakončena formulováńım a řešeńım problému umı́stěńı
kruhových překážek podél dané cesty, který se zabývá dosud neřešeným aspektem mo-
tivuj́ıćı těžebńı aplikace.

Kĺıčová slova: permutativńı reprezentace, metaheuristický algoritmus, obecný řešič,
hledáńı zdroj̊u radiace, problém směrováńı flotily elektrických vozidel, rozvrhováńı údržby
přenosové śıtě, samomazaćı graf, problém obchodńıho cestuj́ıćıho, hamiltonovská cesta,
autonomńı těžba, problém umı́stěńı kruhových překážek podél dané cesty.

v

List of Acronyms

ACO Ant Colony Optimization. 6, 10, 36

ALNS Adaptive Large Neighborhood Search. 7, 54, 123

ASCHEA Adaptive Segregational Constraint Handling Evolutionary Algorithm. 90, 124

BKS Best-Known Solution. 35, 54

CMA-ES Covariance Matrix Adaptation Evolution Strategy. 10, 55

CP Constraint Programming. 1, 3

CTU Czech Technical University. ii, 126

CVRP Capacitated Vehicle Routing Problem. 4, 35, 90

EVRP Electric Vehicle Routing Problem. iv, 2, 3, 6, 7, 35, 90, 123, 126

GA Genetic Algorithm. 6, 9

GLNS Generalized Large Neighborhood Search. 7, 11, 123

GRASP Greedy Randomized Adaptive Search Procedure. 7, 35, 55, 123

GTSP Generalized Travelling Salesperson Problem. 7, 11

GVRP Green Vehicle Routing Problem. 35

HCP Hamiltonian Cycle Problem. iv, 4, 90, 126

HCP-SD Hamiltonian Cycle Problem on Self-Deleting graphs. 4, 103, 124

IG Iterated Greedy. 7

ILP Integer Linear Program. 8

ILS Iterated Local Search. 6, 7, 55, 123, 124

IMR Intelligent and Mobile Robotics. ii, 7

IP Integer Programming. iv, 1–3, 5, 6, 8, 90, 124, 126

IQCP Integer Quadratically Constrained Program. 8

IQP Integer Quadratic Program. 8

LNS Large Neighborhood Search. iv, v, 7

LP Linear Program. 8

MILP Mixed Integer Linear Program. 7–9, 55

MIQCP Mixed Integer Quadratically Constrained Program. 8

MIQP Mixed Integer Quadratic Program. 8

NPFS Non-Permutation Flowshop Scheduling Problem. 4, 90

NSGA Non-dominated Sorting Genetic Algorithm. 10

PCCP Path-Conforming Circle Placement Problem. iv, 4, 115, 124

PSO Particle Swarm Optimization. 10

Q3AP Three Dimensional Assignment Problem. 10

QAP Quadratic Assignment Problem. 90

ROADEF French Operations Research & Decision Support Society. iv, v, 6–8, 54, 123, 126

RTE Réseau de Transport d’Électricité. 54, 123

SA Simulated Annealing. 6

SOP Sequential Ordering Problem. 9

TMS Transmission Maintenance Scheduling. 90

TRP Travelling Repairman Problem. 9

TS Tabu Search. 6, 10

TSP Travelling Salesperson Problem. iv, 1, 3, 4, 7, 9, 90, 115, 126

TSP-CP Travelling Salesperson Problem with Circle Placement. 115, 124, 126

TSP-SD Travelling Salesperson Problem on Self-Deleting graphs. 4, 103, 115, 124

UAV Unmanned Aerial Vehicle. 2, 7, 11

UGV Unmanned Ground Vehicle. 2, 3, 11

VND Variable Neighborhood Descent. 35

VNS Variable Neighborhood Search. iv, v, 7, 10, 35, 36, 55, 123, 124

VRP Vehicle Routing Problem. 2, 9, 35, 123

vi

Contents

Acknowledgements ii

Abstract iv

List of Acronyms vi

1 Introduction 1

2 Related work 5
2.1 Selected optimization methods . 5
2.2 Generic metaheuristic solvers and metaheuristic frameworks 9

3 Path planning algorithm ensuring accurate
localization of radiation sources 11

4 The GRASP Metaheuristic for the Electric Vehicle Routing Problem 35

5 The ALNS metaheuristic for the transmission maintenance scheduling 54

6 Metaheuristic solver for problems with permutative representation 90

7 The Hamiltonian Cycle and Travelling Salesperson
problems with traversal-dependent edge deletion 103

8 Where to place a pile? 115

9 Results and Discussion 123

10 Conclusion 126

A Author’s publications 127
A.1 Thesis core publications . 128
A.2 Related publications . 128
A.3 Supervised theses . 129

Bibliography 130

vii

Chapter 1

Introduction

With a history dating back to the 18th century [15], combinatorial optimization is
now a mature field with robust theoretical foundations and a broad portfolio of powerful
methods. However, challenging applications are continually emerging in a wide range
of diverse fields, such as resource allocation [16], machine learning [17], supply chain
management [18], financial engineering [19], or robot routing [20]. New applications often
require the formulation of new models, the scaling up of existing methods, or the design
of entirely new algorithms. Moreover, the underlying optimization problems are often
intractable. For these reasons, selecting the most suitable method typically requires a
tradeoff between some of these criteria: optimality or approximation guarantee, solution
quality, runtime, scalability, design time, and versatility.

Some problems arewell-solved, meaning that exact polynomial-time algorithms exist.
These are, for example, various shortest path problems, network flows, minimum spanning
trees, or matching problems [21]. If the problem at hand can be reduced to any of these,
it belongs to the P complexity class and can be considered efficiently solvable.

For other problems, which are known to be NP-hard, the existence of such algorithms
is unlikely, unless P = NP . Then, it comes to balancing the mentioned tradeoffs and
picking the method most suitable, rather than perfect, for the given application. The first
option might be an approximation algorithm, capable of providing a near-optimal
solution in polynomial time, together with a provable guarantee of the solution quality,
such as the classical Christofides algorithm [22] for the Travelling Salesperson Problem.
The main advantage of such a polynomial algorithm lies in its performance and scalability.
However, the provided quality guarantee might be too weak and easily surpassed by other
methods in practice, and most importantly, such an algorithm might not even exist for
the problem at hand.

When the optimality of the solution is required, the available design time is limited,
and the instances are of moderate size, the most suitable choice is to use Integer Pro-
gramming (IP). Today, there are multiple solvers, such as Gurobi Optimizer [23], IBM
ILOG CPLEX Optimizer [24], or FICO Xpress Solver [25], that provide highly efficient
implementations of state of the IP art algorithms. The only requirement to the user is
to formalize the problem and create a sensible model, which makes these solvers very
attractive and widely used in practice. However, an explicit IP formulation of a high-
dimensional problem may result in an immensely large model, which can be difficult to
work with solely due to memory limitations. Additionally, the computational complexity
of an exact solver is inherently exponential when solving an NP-hard problem, which
makes it intractable. For these reasons, scalability remains a major limitation of prob-
lem nonspecific IP methods. Moreover, IP modeling is limited to linear and quadratic
(in)equalities. An alternative declarative programming paradigm with user properties
similar to IP is Constraint Programming (CP). CP is most suitable for finding any
feasible solution in highly constrained problems, but can also be used for optimization.
A major limitation of CP solvers is their inability to handle continuous variables.

Computationally challenging applications are often tackled by metaheuristics, high-
level algorithmic frameworks that can be adapted to problem-specific metaheuristic al-

1

CHAPTER 1. INTRODUCTION

gorithms. Metaheuristic algorithms often do not provide any guarantees about solution
quality. They focus on performing an efficient local search in diverse promising regions
of the solution space, without traversing it exhaustively. Despite being neither com-
plete nor optimal, they are frequently used in applications where no other approach is
computationally feasible. Moreover, metaheuristic algorithms are often documented to
obtain solutions of similar quality as IP solvers in a significantly shorter time even on
smaller problem instances. Concerning their major drawbacks, apart from the obvious
lack of guarantees, most applications of metaheuristics require considerable design time
and the implementations are not versatile. This is because essential components, such
as various heuristics and operators, tend to be tailored to a particular problem. Using
problem-specific information about the structure of the objective function or individual
constraints can greatly increase the performance of these components, but makes the
metaheuristic algorithm highly customized.

In this thesis, we focus on the design of metaheuristic algorithms for prob-
lems with permutative representation, that is, combinatorial optimization problems,
whose solution can be encoded as an ordered sequence of possibly recurring nodes from a
predefined set. Often, these problems differ only in the definition of the objective function
and the set of constraints to be satisfied. Permutative representation naturally emerges
in numerous frequently studied classes of problems, such as operation planning, vehicle
routing, or resource scheduling. This thesis is a compilation of six core publications, three
of which were published in impacted journals. Each core publication addresses a different
problem with permutative representation, or the whole class of problems.

Problem-specific metaheuristic algorithms

In the first stream of work, consisting of the core publications [c1]–[c3], we propose various
problem-specific metaheuristic algorithms tailored to a particular problem. The common
goal was to develop a specialized algorithm that would be highly scalable and provide
near-optimal solutions in a reasonable runtime. This was achieved primarily by designing
custom components, such as local search operators, construction, destruction, or repair
heuristics, and integrating them into suitable metaheuristics. These components typically
exploit domain-specific knowledge to (i) efficiently and often incrementally evaluate the
objective function, and (ii) take into account various constraints and restrict or navigate
the algorithm towards searching only the space of valid solutions. From an application
perspective, we tried to focus on recently formulated problems of practical relevance.

In the first core publication [c1], we proposed a metaheuristic algorithm for the path
planning of an Unmanned Ground Vehicle (UGV) in complex robotic application. The
objective was to pefrorm an accurate localization of radiation sources by a heterogeneous
robotic team. The essence of the planning problem lay in determining the order of inspec-
tion of individual regions of interest and selecting the most advantageous vehicle maneuver
in each region, see Figure 1.1a. In this visualization, the yellow-green areas, identified
by an UAV, are the areas of possible occurrence of a radiation source. These are then
divided into smaller regions of interest (green squares), which are inspected by an UGV.
Each region has to be inspected by performing a maneuver along a circular arc of given
parameters in order to maximize localization accuracy. The yellow line then represents a
near-optimal UGV trajectory, and the black crosses are the detected source locations.

The second core publication [c2] was motivated by an international competition orga-
nized within the IEEEWCCI 2020 conference [27]. The competition proposed the Electric
Vehicle Routing Problem (EVRP), a novel variant of the classical Vehicle Routing Prob-

2

CHAPTER 1. INTRODUCTION

(a) Localization of radia-
tion sources by UGV [c1]

(b) Electric Vehicle Routing
Problem (EVRP) - solution [c2]

(c) Power transmission
network [c3] (source: [26])

Figure 1.1: Illustrations to problems [c1]–[c3]

lem (VRP), for which we developed the winning algorithm. In this problem, the goal
was to determine the order in which to serve individual customers using a fleet of electric
vehicles while respecting constraints on the cargo load and range of the electric vehicles.
Figure 1.1b shows the central depot (red circle), customers (blue circles), charging stations
(black squares) and routes of individual vehicles (blue lines).

Similarly, the third core publication [c3] describes our submission to the ROADEF
Challenge 2020 [28], a prestigious international competition with a 25-year history and
dozens of participating teams from all over the world in each run. The 2020 problem, for-
mulated by an industrial partner, focused on the maintenance scheduling of a large power
transmission network (Figure 1.1c). The goal was to schedule the interventions necessary
to carry out the preventive maintenance of individual power lines while respecting various
constraints, such as mutual exclusiveness, limited workforce and resources, or seasonal
risk factors. Our algorithm finished 2nd out of 31 teams in the junior category and 8th

out of 74 in overall ranking. To summarize, for each of the three mentioned problems, we
successfully developed a state of the art algorithm for the given problem, which is docu-
mented by the success in the competition of other methods, publication in an impacted
journal, or both.

Generic metaheuristic solver for problems with permutative representation

The second stream of work is directly motivated by the first one and builds on the acquired
experience. Instead of developing yet another specialized solver for the next problem that
arises, our focus shifted towards designing a universal metaheuristic solver that could be
readily applied to the whole class of problems with permutative representation. The idea
was to design a solver that would require only the formulation of the problem in a simple
unified formalism and not the implementation of specialized components, similarly to the
even more generic IP and CP solvers based on exact methods. Performance-wise, the
proposed generic metaheuristic solver’s scalability should surpass the exact methods at
the usual cost of no guarantees and get closer to the specialized metaheuristic algorithms.

In the fourth core publication [c4], we propose a formalism to describe problems with
permutative representation. Together with this formalism, we create a generic metaheuris-
tic solver capable of solving the problems defined in this formalism. The solver is highly
modular, providing various alternative metaheuristics and low-level components. Thus,
it can be automatically configured to fit a particular problem. The solver was success-
fully benchmarked against IP Gurobi Optimizer on several classical problems: Travelling

3

CHAPTER 1. INTRODUCTION

(a) Autonomous open-pit mining: Phase 1 of
“drill and blast” method [c5] (source: [29])

(b) Path-Conforming Circle Placement
Problem (PCCP) - solution [c6]

Figure 1.2

Salesperson Problem (TSP), Capacitated Vehicle Routing Problem (CVRP) and Non-
Permutation Flowshop Scheduling Problem (NPFS).

The following fifth core publication [c5] studies several novel optimization problems,
originally motivated by autonomous drill rig routing in an open-pit mining application
(Figure 1.2a). These problems are TSP, Hamiltonian Cycle Problem (HCP), and their
relaxed variants, all of which are defined on self-deleting graphs. In self-deleting graphs,
visiting a vertex results in removing a predefined set of edges, which makes the problem
dynamic and highly constrained. The problems are named Travelling Salesperson Prob-
lem on Self-Deleting graphs (TSP-SD) and Hamiltonian Cycle Problem on Self-Deleting
graphs (HCP-SD). They are studied both theoretically and experimentally, and a solution
approach based on the generic metaheuristic solver from [c4] is proposed. The generic
solver proves to be sufficiently scalable, although an exact construction procedure had to
be added in order to guarantee solution feasibility even for highly constrained instances.

The last core publication [c6] extends the work [c5]. In this publication, we formulate
the Path-Conforming Circle Placement Problem (PCCP) which addresses a previously
unsolved aspect of the motivating mining application, namely the optimization of pile
placement along a given vehicle tour (Figure 1.2b). Ultimately, TSP-SD and PCCP
should be addressed simultaneously, which was beyond the capabilities of the proposed
formalism for problems with permutative representation [c4] and is tackled in [r11], which
is currently under review.

The rest of this thesis is organized as follows. In Chapter 2, we elaborate on the state
of the art in metaheuristic algorithms in general and generic solvers similar to the one
presented in [c4]. In Chapters 3-8, we briefly introduce individual core publications and
present the full texts. Chapter 9 discusses the main results of individual contributions
in the context of the entire thesis. Finally, Chapter 10 provides conclusions and possible
future perspectives of the presented research.

4

Chapter 2

Related work

This chapter discusses related work relevant to the two streams of work presented in
this thesis. The first stream, represented by the core publications [c1]–[c3], focuses on the
design of problem-specific metaheuristic algorithms for various applications. The litera-
ture relevant to the specific applications is discussed in the core publications themselves.
In Section 2.1, we provide a general overview of the development in the field of combi-
natorial optimization techniques suitable for our applications, especially metaheuristics.
Then, we shift towards the second stream, the generic metaheuristic solver for problems
with permutative representation. In Section 2.2, we discuss other existing metaheuristic
algorithms for permutation-based problems and generic metaheuristic frameworks.

2.1 Selected optimization methods

The main goal of this section is to provide a non-exhaustive overview of the methods,
which can be labeled highly scalable and generic, meaning that they can be applied or
adapted to a wide portfolio of combinatorial optimization problems. The main areas of
interest are metaheuristics and Integer Programming (IP). In both areas, we summarize
the main contributions, their features, and explain the connections to this thesis.

Metaheuristics

The term “metaheuristic” was coined by Sörensen & Glover, who defined it as “a high-level
problem-independent algorithmic framework that provides a set of guidelines or strategies
to develop heuristic optimization algorithms” [30]. In this definition, a heuristic optimiza-
tion algorithm marks a problem-specific algorithm that provides an approximate solution
to an optimization problem. Often, such a problem-specific instantiation of a metaheuris-
tic is called a “metaheuristic for a particular problem” (e.g., Variable Neighborhood Search
for Job Shop Scheduling Problem) or a “metaheuristic algorithm”. Designing such an in-
stantiation remains a challenging task, and a large amount of research is dedicated to
applying established metaheuristics to newly formulated problems. For completeness, the
term “heuristic” alone often refers to a problem-specific algorithmic component that im-
plements a simple rule, such as, for example, a construction heuristic. In the rest of this
section, we provide a non-exhaustive chronological overview of the main contributions
in the field of metaheuristics. We explain the main features of individual methods, as
selecting a suitable metaheuristic for a given application is crucial to the efficiency of the
resulting metaheuristic algorithm. Each of these metaheuristics has countless applications
in the literature. Thus, we emphasize only their applications to the problems of interest
in this thesis, both ours and those of other authors.

According to [30], a greedy constructive algorithm is one of the oldest high-level
algorithmic ideas that could, to an extent, be considered an early metaheuristic. This
basic principle was instantiated in several algorithms dating as far back as the first half of
the 20th century, such as the Bor̊uvka-Sollin algorithm (1926, [31]) or the Prim-Dijkstra-

5

2.1. SELECTED OPTIMIZATION METHODS CHAPTER 2. RELATED WORK

Jarńık algorithm (1930, [32]). However, systematic research on metaheuristics followed
after the introduction of IP and the first exact methods. Research on evolutionary
strategies started as soon as the 1960s [33], although the first methods employed only
the mutation operator and were designed as constraint satisfaction algorithms, rather
than optimization ones. The modern form of evolutionary algorithms for optimiza-
tion problems was introduced by [34] in 1975, together with the key concepts of population
evolution, crossover, and selection. In this thesis, genetic and evolutionary algorithms are
only rarely represented, as they are generally less scalable than single-solution metaheuris-
tics that do not maintain a whole population of solutions. A Genetic Algorithm finished
third in the IEEE WCCI competition on EVRP [27], which we address in Chapter 4.

Another early nature-inspired metaheuristic was the Simulated Annealing (SA) [35],
introduced in 1983, which is based on performing random solution changes and accepting
the resulting solutions with an acceptance probability inversely proportional to the differ-
ence between the best known and current cost value. Thus, even nonimproving solutions
can be accepted with a small acceptance probability, which adds the ability to escape
local optima and diversifies the search process. The acceptance probability is controlled
by a so-called temperature parameter, which is decreasing according to a cooling schedule
originally mimicking cooling processes in metallurgy. This mechanism typically favors
diversification at the beginning of the search process and gradually shifts towards inten-
sification. SA algorithm finished second in the IEEE WCCI competition on EVRP [27].

Tabu Search (TS) [36], introduced in 1986, added short-term memory to the search
process. The memory is added using so-called tabu list, which is a fixed-size list of recently
visited solutions or recently explored solution attributes. The purpose of the tabu list is
to prevent cycling and repeated exploration of the same solution subspaces, which is
beneficial both for increasing search efficiency and search diversification. Tabu Search
is not applied to any of the thesis-related problems on its own, but it is an established
mechanism that is frequently used in combination with other metaheuristics [37].

Ant Colony Optimization (ACO) [38], introduced in 1991, represents another
approach how to incorporate memory into the search process. In ACO, a set of candidate
solutions is iteratively constructed using a construction heuristic. This heuristic takes
into account not only the heuristic information about the instance at hand, but also the
information collected during the previous iterations. This information loosely corresponds
to dynamically changing pheromone trails, which are used by real ant colonies seeking
sources of nutrition. A metaheuristic algorithm based on ACO [39] was adapted for
the EVRP, addressed in Chapter 4.

Iterated Local Search (ILS) [40], introduced in 1981, is one of the earliest neighbor-
hood based metaheuristics. Basic ILS performs an exhaustive local search in a restricted
neighborhood, which is defined by a local search operator. Here, a local search operator
is a function that typically performs a minor modification of an incumbent solution, such
as swapping two nodes at given positions in a solution sequence. The space of solutions
reachable by all possible applications of a given operator is then called a neighborhood.
Once a local optimum with respect to the neighborhood is reached, a perturbation opera-
tor is used to randomly modify the current solution and the local search is repeated. The
perturbation should be strong enough to reach a different local optimum in the next local
search run. Thus, ILS constantly alternates intensification and diversification. ILS is a
metaheuristic repeatedly emerging in the problems addressed in this thesis. We based our
solution method [s14] for the ROADEF Challenge 2022 [28] on ILS, and we also added it
to the generic solver proposed in [c4]. A hybrid metaheuristic algorithm combining ILS

6

2.1. SELECTED OPTIMIZATION METHODS CHAPTER 2. RELATED WORK

and MILP [41] won the ROADEF Challenge 2020 [28] and a purely heuristic ILS approach
finished in second place [42].

Variable Neighborhood Search (VNS) [43], introduced in 1997, substantially
extended the basic ILS scheme. Rather than using a single neighborhood, the VNS
performs local search sequentially in multiple neighborhoods, as the local optimum with
respect to one neighborhood may not be a local optimum with respect to another one and
better solutions can be found. In addition, VNS uses multiple perturbations of different
strengths, which is useful for overcoming search stagnation. We won the IEEE WCCI
competition on the EVRP [27] with a VNS metaheuristic algorithm, which was based
on [c2] and later described in [r10]. Then, we added VNS to the generic solver proposed
in [c4]. In another research stream in the IMR laboratory [44], it was also recently used
to address the Multi-Agent Multi-Item Pickup and Delivery Problem [45], to schedule
plan execution in the Multi-Agent Pathfinding Problem [46] or in mobile robot search
planning [47].

Greedy Randomized Adaptive Search Procedure (GRASP) [48], introduced
in 1995, was probably the first metaheuristic systematicaly exploiting repeated restarting.
GRASP combines a greedy randomized construction heuristic with a local search. The
GRASP repeatedly builds a good quality initial solution, which is then improved to local
optimality by a local search engine. Randomization of the construction heuristic ensures
search diversification and can be controlled by a tunable parameter. We applied GRASP
in the thesis core publication [c2] and also in [r11], which extends the research presented in
the core publication [c5]. GRASP was also successfully used in a hybrid metaheuristic with
MILP by one of our competitors [49] in ROADEF Challenge 2020 [28], which finished 3rd

in the final phase. In the IMR laboratory, it was also recently used for inspection planning
of structured areas by UAVs [50].

Similarly, Large Neighborhood Search (LNS) [51] introduced in 1998, success-
fully extended a basic metaheuristic often called Iterated Greedy (IG) [52], whose origin
is unknown. IG repeatedly partially destroys and repairs the current solution, using a
single destroy heuristic and a greedy repair heuristic. LNS follows the same principle,
but employs several destroy and repair heuristics. An extension of the LNS is the Adap-
tive Large Neighborhood Search (ALNS), which we adapted to the ROADEF Challenge
2020 [28] competition problem described in the core publicaton [c3]. We also successfully
applied GLNS [53], an adaptation of the LNS for the GTSP, to several planning problems
in mobile robotics in the IMR laboratory, e.g., the thesis core publication [c1] described in
Chapter 3, indoor inspection planning for a mobile robot [54] or TSP with neighborhoods
in a polygonal world [55].

The presented methods are still widely used in practice, although some of them are
more than 40 years old. An unfortunate ongoing trend is to invent novel metaheuristics
based on various nature-inspired metaphors, such as wolf packs, bees, bacteria, bats,
fireflies, or even mine blasts [30]. However, many of these attempts contribute very little
to the development of the field and are often seen as a mere relabeling of existing principles
by the research community [56]. A more promising current trend lies in creating hybrid
metaheuristics, which may combine the advantages of different approaches. Two examples
are memetic algorithms [57], combining evolutionary algorithms and local search, and
matheuristics [58], combining exact and heuristic methods. Finally, there is an increasing
interest in so-called hyperheuristics [59] - methods intelligently selecting or generating a
suitable heuristic for a given problem.

7

2.1. SELECTED OPTIMIZATION METHODS CHAPTER 2. RELATED WORK

Integer Programming (IP)

IP is a standard tool for solving combinatorial optimization problems. As mentioned
in Chapter 1, IP methods have two major advantages: design efficiency and optimality
guarantee. Solution methods are implemented in various solvers, and the user is only
required to provide a mathematical formulation of his problem. The methods of IP are
able to provide an optimality gap during the search and guarantee global optimality once
the search is finished. As for the main drawbacks, IP provides complete and optimal
algorithms only for problems of a certain structure, and scale worse compared to custom
metaheuristic algorithms. The most common formalism is the Integer Linear Program
(ILP), which can be described in canonical form as

minimize cTx

subject to Ax ≤ b,

x ≥ 0,

where x ∈ Zn,A ∈ Rm×n,b ∈ Rm, c ∈ Rn.

If not all decision variables in x need to be integers, the problem is called the Mixed
Integer Linear Program (MILP). There are also techniques for solving IP problems with
a quadratic objective - Integer Quadratic Program (IQP), quadratic constraints - Integer
Quadratically Constrained Program (IQCP), and their partially integral variants (MIQP,
MIQCP). General cases of these problems are NP-hard, which makes the complete IP
algorithms computationally demanding and not scalable.

Concerning the solution methods, the cornerstone of an IP solver is an efficient al-
gorithm for solving the Linear Program (LP) problem, as solving LP relaxations of ILP
problems is a common step in ILP algorithms. Until today, many methods used in prac-
tice are based on two classical algorithms: the Dantzig’s simplex algorithm [60] and
Dikin’s interior-point method [61]. Whereas the simplex algorithm has only average case
polynomial-time complexity [62], the Karmarkar’s algorithm [63] (a variant of the interior-
point method) is provably polynomial.

When solving an ILP, there are two main classes of methods. The first one is the
Branch and Bound approach (B&B), first defined by [64], which is based on partitioning
the problem into smaller subproblems and eventually eliminating them through bounding.
The second is the cutting-plane method, introduced by [65]. By applying additionally
generated inequalities and constraints, the so-called cuts, the set of feasible solutions of the
original problem is gradually reduced. These two methods are often used in combination,
thus forming so-called Branch and Cut (B&C) algorithms [66]. Modern solvers implement
a large number of different cuts, for example, Gomory cuts [65], clique cuts [67], cover
cuts [68], disjunctive cuts [69], flow cover cuts [70], and many others [71].

In this thesis, the state of the art IP Gurobi optimizer [23] is benchmarked against
our generic metaheuristic solver proposed in [c4]. It turns out that the IP solver on its
own lags behind the heuristic one in terms of both scalability and solution quality on
several textbook problems in fixed-time experiments, as is often the case in the literature.
However, it emerges as a valuable component in several of the best-performing methods in
ROADEF Challenge 2020 [28]. This competition addressed a complex industrial problem
and motivated [c3]. A MILP solver was used in at least four of the 13 methods submitted
to the final phase, including the winning one. MILP solver was used twice in a hybrid
scheme with a metaheuristic algorithm, either to find a feasible solution or to refine the

8

2.2. GENERIC METAHEURISTIC SOLVERS AND METAHEURISTIC
FRAMEWORKS CHAPTER 2. RELATED WORK

quality of the solution. In the other two cases, a MILP relaxation was used to speed up
the optimization process.

2.2 Generic metaheuristic solvers and metaheuristic

frameworks

In this section, we discuss the work related to the second research stream presented in
this thesis, which is the generic metaheuristic solver for problems with permutative rep-
resentation [c4], [s13] and its applications [c5], [c6]. First, we describe several existing
metaheuristic algorithms for some subclasses of permutation-based problems and their
usage specifics. Then, we discuss modular metaheuristic frameworks that are not re-
stricted to a single problem class. The solver proposed in [c4] falls in between these two
categories.

Metaheuristic algorithms for permutation-based problems

This section presents some metaheuristic algorithms that can be applied to multiple
permutation-based problems with minimal adjustments. Their reusability usually re-
lies on problem reductions, either optimum-preserving or approximation-preserving [72].
Therefore, they are similar to the generic metaheuristic solver proposed in [c4], but the
representation of interest in [c4] aims to be more general and covers problems beyond the
capabilities of all the methods mentioned.

An exceptionally mature solver is the LKH3 solver, which is an extension of the Lin-
Kernighan-Helsgaun TSP solver [73]. It is able to solve a large number of variants of
the Vehicle Routing Problem (VRP), Sequential Ordering Problem (SOP), Travelling
Repairman Problem (TRP), Travelling Salesperson Problem (TSP), and others. LKH3 is
based on transforming these problems into a standard TSP using a variety of optimum
preserving reductions. Problem-specific penalty functions are implemented separately to
handle additional constraints. LKH3 currently supports a total of 39 problems and is
not designed with user-friendly extendability towards other problems in mind, as the
necessary problem transformations to the TSP and back to the actually solved problem
are hard-coded within the library. The objective function cannot be altered at all and
is inherently tied to a static distance matrix, which greatly enhances the computational
efficiency, but limits the method’s versatility.

Another example is the Unified Hybrid Genetic Search for Multiattribute Vehicle Rout-
ing Problems [74]. It is a general-purpose solver consisting of problem-independent local
search, genetic operators, and diversity management methods. Problem specifics are ad-
dressed by separate components for assignment, sequencing, and route evaluation. The
solver is tested on 29 variants of the VRP and can be extended to others. For some
problems, the solver is reported to match the performance of more specialized methods.

Addressing problems with fixed length permutation representation by Genetic Algo-
rithms (GA) is well studied [75], [76]. Probably the most similar work to [c4] is [77],
which introduced two parallel hybrid optimization methods for permutation-based prob-
lems. The addressed representation is a fixed length permutation with or without re-
placement. Both proposed methods combine GA with Branch & Bound technique and
were built using the ParadisEO [78] framework. The work is more of a theoretical sig-
nificance, as it provides an extensive overview of neighborhood and genetic operators for

9

2.2. GENERIC METAHEURISTIC SOLVERS AND METAHEURISTIC
FRAMEWORKS CHAPTER 2. RELATED WORK

permutation-based problems. However, both proposed methods are tested only on the
Three Dimensional Assignment Problem (Q3AP), and the implementation in its current
form can be used only for other assignment problems.

Metaheuristic frameworks

This section provides examples of several existing metaheuristic frameworks. These frame-
works are designed with maximal reusability in mind and usually implement a portfolio
of templatized metaheuristics that can be adjusted to the problem at hand, rather than
implemented from scratch. However, they still place requirements on the user going be-
yond problem modelling, as they are often modular and the formation of the final method
is up to the user. In addition, they typically support only basic representations, such as
vectors of fixed length. Custom representations can be added at the cost of implementing
specialized operators or neighborhoods. A more detailed comparison covering multiple
frameworks can be found in [79].

The most widely used framework according to [79] is the Java-based Evolutionary
Computation Research System (ECJ, [80]). It implements a large number of state of
the art algorithms such as Covariance Matrix Adaptation Evolution Strategy (CMA-ES),
Non-dominated Sorting Genetic Algorithm (NSGA), Ant Colony Optimization (ACO),
or Particle Swarm Optimization (PSO) and supports parallelization. Problem represen-
tations are limited to several tree representations for genetic programming and various
vector representations for genetic algorithms.

Another established framework is ParadiseEO [78], implemented in C++. Similarly
to ECJ, ParadisEO is focused on evolutionary algorithms and enables parallelization.
However, it also contains a separate module for local search algorithms and provides an
automated parameter tuning. Regarding problem representations, it supports various
vector representations, genetic programming tree representations, and problems repre-
sentable by permutation.

More specialized frameworks exist as well. For example, the MOEA framework [81]
is a Java-based framework focused on multiobjective evolutionary algorithms. It features
25 different algorithms and supports common vector representations and permutations.

Another example is the Java Metaheuristic Search Framework (JAMES, [82]), which
specializes in local search metaheuristics. It implements algorithms such as Stochastic
Hill Climbing, Tabu Search or Variable Neighborhood Search. The user can use a custom
solution representation, but is required to provide at least one neighborhood for generating
moves, which is an essential part of a local search algorithm.

10

Chapter 3

Path planning algorithm ensuring accurate
localization of radiation sources

In this chapter, we present the first core publication called Path planning algorithm
ensuring accurate localization of radiation sources [c1]. The presented research is a con-
tinuation of the author’s diploma thesis [r7] and complements the research carried out
in the Cybernetics and Robotics research group at CEITEC VUT Brno [83], which was
presented in [84] and [85].

[c1] Woller, D., Kulich, M., “Path planning algorithm ensuring accurate localiza-
tion of radiation sources”, Applied Intelligence, pp. 1–23, 2022, issn: 15737497.
doi: 10.1007/S10489-021-02941-Y, 70% contribution, IF 5.3 (Q2 in
Computer Science, Artificial Intelligence), citations: 1 in Web of Sci-
ence, 1 in Scopus, 2 in Google Scholar.

The paper addresses in greater detail a single subproblem of a complex robotic appli-
cation. In the motivating application, a heterogeneous multirobot system is tasked with
the localization of sources of gamma radiation, spread across an outdoor area. In the first
phase, the entire area is scanned by a Unmanned Aerial Vehicle (UAV), and several re-
gions are identified. In the second phase, these regions of interest are closely inspected by
a Unmanned Ground Vehicle (UGV), which is tasked with highly accurate localization of
radiation sources. The paper presents a path planning algorithm for the UGV that guar-
antees a successful localization of radiation sources and minimizes the UGV’s trajectory
length. The UGV is equipped with a high resolution gamma detector, which measures
only the radiation count rate. To collect suitable data for accurate source localization,
the UGV has to perform maneuvers along specific circular arcs in the regions of interest.

The proposed approach formulates the problem as the Generalized Travelling Sales-
person Problem (GTSP) [86], which is defined in an unusual domain of specific robot
maneuvers in R2. The goal is to visit exactly one node (perform a maneuver) from
each given set of maneuvers covering certain area and minimize the total cost of the tra-
jectory. To address this problem, the Generalized Large Neighborhood Search (GLNS)
metaheuristic algorithm for the GTSP [53] is adapted. This paper presents the following
contributions. First, an informed discretization procedure is proposed to transform the
planning problem into the GTSP, where all sampled vertices correspond to maneuvers
guaranteeing source localization in a corresponding subregion. Second, a reduction pro-
cedure that identifies and removes redundant maneuvers, not likely to be in any good
quality solution, is proposed. Third, the original GLNS algorithm is adapted for the
specifics caused by the use of maneuvers along circular arcs as vertices in the GTSP. The
algorithm is also extended by the possibility to plan with polygonal obstacles and to take
into account the robot’s in-place rotation speed. Finally, a post-processing optimization
procedure in the continuous space of maneuvers is proposed.

The experimental results document the effect of individual components and assess the
scalability of the proposed approach on several artificial datasets.

11

https://doi.org/10.1007/S10489-021-02941-Y

https://doi.org/10.1007/s10489-021-02941-y

Path planning algorithm ensuring accurate localization
of radiation sources

David Woller1,2 ·Miroslav Kulich1

Accepted: 13 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
An autonomous search for sources of gamma radiation in an outdoor environment is a domain suitable for the deployment
of a heterogeneous robotic team, consisting of an Unmanned Aerial (UAV) and an Unmanned Ground (UGV) Vehicle. The
UAV is convenient for fast mapping of the area and identifying regions of interest, whereas the UGV can perform highly
accurate localization. It is assumed that the regions of interest are identified by the UAV during an initial reconnaissance,
while performing a simple motion pattern. This paper proposes a path planning algorithm for the UGV, which guarantees
accurate source localization in multiple preselected regions and minimizes the total path length. The problem is formulated
as the Generalized Travelling Salesman Problem (GTSP) defined for discrete sets of suitable maneuvers (circular arcs),
ensuring source localization in the given regions. The problem is successfully solved by a modified version of the state of
the art GTSP solver, Generalized Large Neighborhood Search with Arcs (GLNSarc). Apart from adapting the GLNS, other
aspects of the planning task are addressed: problem discretization and informed sampling of valid circular arcs, variants of
weighting the nonrestricted trajectory segments between the arcs and postprocessing of the discretely planned trajectory in
the continuous domain.

Keywords Search for radiation sources · Combinatorial optimization · Generalized Large Neighborhood Search ·
Generalized Travelling Salesman Problem · Heuristics · Metaheuristics

1 Introduction

Localization of radiation sources is a critical task repeatedly
arising in various accidents of high seriousness. This paper
focuses on localizing isolated point sources in otherwise
uncontaminated areas or hot spots in large-scale accidents.
Several types of incidents happened over the last century
and are likely to occur again, no matter the level of
technological progress and safety precautions [36]. First,
there are cases of lost, stolen, or orphaned sources,
commonly from an industrial or medical application.

� David Woller
wolledav@cvut.cz

Miroslav Kulich
kulich@cvut.cz

1 Czech Institute of Informatics, Cybernetics and Robotics,
Czech Technical University in Prague,
Prague, Czech Republic

2 Department of Cybernetics, Faculty of Electrical Engineering,
Czech Technical University in Prague, Karlovo náměstı́ 13,
Praha 2, 121 35, Czech Republic

Sources were found at junkyards, abandoned factories,
or even urban areas, often by unsuspecting citizens [31].
Another danger is related to the military use of nuclear
energy and weapons. The U.S. alone admits 32 so-called
broken arrow incidents (e.g., accidental nuclear detonation,
contamination, loss in transit, or accidental jettisoning),
including six cases of lost and never recovered nuclear
weapons [35]. Finally, a number of accidents happened in
the nuclear power industry, most notably the Chernobyl
and Fukushima disasters. The initial postdisaster cleanup at
Chernobyl included liquidation of highly radioactive debris,
representing another relevant application.

Robotic systems are an obvious choice for radiation
source localization due to the extreme risk the radiation
presents to humans. As the environment can be urban or
rural and indoor or outdoor, the commonly used systems
are typically semiautonomous or entirely teleoperated.
Unmanned Aerial Vehicles (UAVs) or Unmanned Ground
Vehicles (UGVs) are deployed depending on the applica-
tion, as each of the platforms has its advantages. UGVs
are typically easier to navigate indoors, can operate for a
longer time, and are capable of more accurate localization. On
the other hand, UAVs are significantly faster and usable in

/ Published online: 7 January 2022

Applied Intelligence (2022) 52:9574–9596

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

12

impassable terrain. In some applications, combining both
platforms is beneficial, as their advantages can be combined.

Such an approach to a semiautonomous search for
sources of gamma radiation is presented in [11, 23] and [24].
The ultimate goal is to localize gamma radiation sources in
an outdoor area, such as a place of a nuclear accident. The
localization is to be carried out as quickly and precisely as
possible, with subsequent use of an UAV and an UGV. The
authors of [24] designed and constructed such a multirobot
system, performed physical experiments, and evaluated the
accuracy of the detection.

The considered scenario consists of two phases, which
are illustrated in Fig. 1. First, the area is mapped by
the UAV carrying a photogrammetry multisensor and a
gamma detector. This phase’s objective is to build a 3D
map of the area surface and to pick regions with the
potential presence of radiation sources. The UAV can carry
only a lightweight gamma detector and its operation time
is limited. Therefore, it is capable of detecting stronger
radiation sources with insufficient precision (up to several
meters). In case of weaker sources, the UAV might not be
able to reliably distinguish the background radiation from
source radiation, as documented in [11]. As there is no
previous knowledge about the source position, the UAV
performs an exhaustive search along a zig-zag trajectory
while keeping an altitude of 10 meters above the terrain.
The flight altitude was experimentally determined in [11]
and it guarantees identifying all regions that could contain
a source of activity relevant in the context of radiation
protection. The minimal activity level of a potentially
dangerous source was set to 10 MBq. The UAV trajectory
and the discovered regions of interest are shown in Fig. 1a.

Second, the UGV with a more accurate gamma detector
is deployed to inspect all previously discovered regions of

interest. Thus, the scenario is not cooperative, as the UGV
is deployed after the UAV finishes the initial mapping,
not simultaneously. The UGV is substantially slower than
the UAV, but it can operate for a longer time and locate
the radiation sources more accurately. Multiple strategies
such as simple zigzag pattern, Strong Source Search
Algorithm [23], or Circular Algorithm [24] were proposed
and tested. However, these algorithms are suitable only for
single-source detection and do not utilize UAV-obtained
information. This information was therefore processed by
a human operator, who had to determine the regions of
interest and manually define key segments (e.g., full circles
of detection in the Circular Algorithm) of the UGV path.
The success of this approach heavily depends on the
operator experience. It does neither guarantee successful
localization of all sources, nor does it optimize the UGV
trajectory w.r.t. to any criteria. It is desirable to suppress
the role of the operator and plan the UGV trajectory
automatically and optimally w.r.t. some criteria, such as
length or time.

This paper extends the preceding work by proposing
a novel path planning algorithm for the UGV, which
replaces the operator in the planning process and guarantees
successful source detection. The goal is to plan an optimal
UGV trajectory (e.g., with minimal length) or near-optimal
one and to guarantee accurate localization of all radiation
sources within the preselected regions of interest. An
example of such a trajectory is shown in Fig. 1b, together
with the detected positions of the radiation sources.

The UGV is assumed to be mounted with relatively
inexpensive high-resolution gamma detectors, which mea-
sure only the count rate. A single radiation source’s posi-
tion can be reliably detected with such a setup by per-
forming a specifically constrained maneuver in its close

Fig. 1 Radiation intensity map produced by the UAV and illustration of the two-phase search

Path planning algorithm ensuring accurate localization of radiation sources 9575

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

13

neighborhood. If this maneuver is a circular arc, and multi-
ple detectors are mounted on the robot, a directional profile
of the radiation can be constructed and used for accurate
localization. Measuring along circular arcs is advantageous,
as it results in steeper characteristics of the measured data.
Thus, the peaks in the measured radiation intensity are more
prominent and can be better distinguished from fluctuations
in background radiation. Moreover, measurements along
circular arcs can be easily interpolated, which is useful for
determining the source position from the measured data.
This setup was successfully deployed in [27, 34], or [23].
Task-specific conditions on the usability of the circular arc
maneuvers are described in Section 2.2.4.

As the UAV-preselected regions of interest can be
arbitrarily large and one circular arc may not be sufficient
for covering a whole region, each region is divided
into smaller subregions of fixed size (green squares in
Fig. 1b). An unlimited number of valid maneuvers for
exploring a subregion exists; therefore, infinitely many
valid circular arcs can be sampled. Besides that, the order
of subregion exploration is not fixed and is also subject
to optimization. Therefore, after appropriate discretization
of individual subregions, the planning problem can be
reformulated as NP-hard Generalized Travelling Salesman
Problem (GTSP). Given n nodes (circular arcs) divided into
m sets (subregions), the goal is to find such a trajectory
that passes through exactly one node from each set and
is optimal with respect to some criterion, e.g., minimum
length. The modified variant of the GTSP with circular arcs
as vertices is from now on referred to as the GTSParc.

This paper presents an approach to the discretization
of the planning problem, introduces GLNSarc algorithm
solving the discrete GTSParc, evaluates its performance in
several experiments and proposes two improvements to the
GLNSarc functionality.

The contribution lies in multiple aspects.

– Problem formulation. The planning task is formulated
as a discrete optimization problem, specifically a variant
of the GTSP and called GTSParc. It is shown how to tailor
the state of the art GLNS metaheuristic to solve it.

– Automation of the UGV path planning. The current
solution relies on a human operator when processing
the UAV-obtained information and specifying critical
segments of the UGV trajectory. The algorithm
presented in this paper replaces the operator role in
this phase and enables to generate the UGV path
automatically. The algorithm is meant to be run on a
base station, after the initial UAV reconnaissance.

– Informed discretization. An infinite number of valid
vertices can be sampled for each subregion, which
increases the computation and memory demands. A
method for detecting sampled vertices that are valid,

but not useful in any potential solution is presented.
Thus, the discretized problem size can be reduced
considerably, which speeds up the planning and allows
for covering much larger areas.

– Guarantee of detection in regions of interest. It is
shown how to sample valid vertices that ensure source
detection in predefined regions of interest. Currently,
this is reliant on the operator experience.

– Post-processing in the continuous domain. The
proposed GLNSarc algorithm is capable of finding
a locally optimal solution in the discrete domain.
However, this solution may not be locally optimal in the
continuous domain. Therefore, a local search procedure
in the continuous domain is introduced. This procedure
is deployed once in postprocessing, after the GLNSarc

finishes.
– Optimality criteria. The algorithm is capable of

minimizing a custom optimality criterion, which can
be difficult for the human operator. This criterion
is determined by the weights assigned to edges in
the GTSParc planning graph. Besides the standard
weighting based on Euclidean distance, a more realistic
weighting is introduced, which also considers the
robot’s rotation speed. It is also demonstrated that
GLNSarc can be deployed in an environment with
obstacles or impassable terrain, both indoor and
outdoor.

The paper is structured as follows. Section 1 con-
tains this introduction and state of the art summary in
Section 1.1. Section 2 provides the theoretical descrip-
tion of the problem and describes the exact steps of the
solution. Sections 2.1 and 2.2 give the formal definition
of the planning problem, as well as the specifics intro-
duced by the application. Section 2.3 presents the employed
GTSP solver - GLNS. Finally, Sections 2.4 to 2.7 tackle
various aspects of the solution - most notably the neces-
sary GLNS modifications, variants of edge weighting, an
approach to the problem discretization and a local opti-
mization technique in continuous space called DenseOpt.
Section 3 then examines the behavior of the algorithm and
evaluates the contribution of individual components of the
solution. A concise summary and conclusion is given in
Section 4.

1.1 State of the art

Concerning gamma radiation monitoring and search for
radiation sources, there are various scenarios and therefore,
various respective approaches. For the long term, static
monitoring in places with a higher risk of radiation leak
(e.g., a nuclear power plant, medical or industrial facilities),
permanent sensor networks are typically installed, while the

D. Woller and M. Kulich9576

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

14

current research is focused on developing reliable wireless
sensor networks [7] or mobile sensor networks [26].

However, when the radiation source presence is not
anticipated in the area or the area is too large or unsuitable
for sensor network installment, a search mission deploying
single or multiple measuring agents is a more adequate
solution. Then, the motion planning becomes a critical
factor in ensuring that the whole area is inspected and
that the inspection is carried out in a reasonable time. The
search process is often referred to as source seeking (SS)
and determining the source position from the measured
data as source term estimation (STE). Apart from radiation
source localization, similar methods are also used for
identifying leaks of gas or chemicals [25]. The SS motion
planning methods can be classified either as adaptive or
proactive [37]. In the case of adaptive methods, the motion
planning is typically controlled by a feedback from the
current output of STE, which is beneficial mainly for
controlling the STE accuracy. Commonly used adaptive
methods are gradient-based traversal, surging or casting [2].
These methods typically contain a simple mechanism for
switching from one sensing location to another (towards
another potential source), but this approach does not deal
well with the intrinsic combinatorial problem, which is
determining the order of exploration of individual regions.
Therefore, they are suitable for localizing only a single
source or for usage by a swarm of robots initially equally
distributed across the area [8].

Proactive strategies are on the other hand designed to
ensure full coverage of the area at the cost of higher
time requirements and possibly lower accuracy. Several
rather simple motion planning strategies, such as the zig-
zag pattern [39] or contour mapping [13], were proposed
for the outdoor environment. The main advantage of aerial
spectrometry is the possibility of quickly exploring a
relatively large area, while the main disadvantage is the low
accuracy of source position estimation. For more accurate
or indoor mapping, a ground-based agent such as a UGV
can be employed. Compared to a UAV, the UGV typically
moves at significantly lower speeds and has to deal with
obstacles and impassable terrain. With no obstacles present
or considered, some motion planning strategies used in
aerial spectrometry were adapted to UGVs (e.g., the zig-zag
pattern). However, these are not suitable in many real world
applications and more complex motion planning strategies
are needed. For example, [33] proposed an approach for
an enclosed polygonal environment. This method first
performs a convex polygon partitioning by splitting the
environment into smaller regions explorable from a single
position. Then, it determines the dwell time needed for
staying in each of these positions using the Currie limit
of detection [5] and plans a trajectory over all positions,
ensuring exploration of the whole area. Similar approach

was followed by [1], which formulated the multigoal
mission as the Travelling Salesman Problem over a set of
predefined measurement locations. The main difference to
the GTSParc is that the planning is performed over a set
of predefined locations of static measurements, where the
robot needs to stop. In the GTSParc, the robot takes useful
measurements while constantly moving, so the GLNSarc

plans over a set of maneuvers, rather than positions. In
other words, the existing approaches directly solve the TSP
or the GTSP over a fixed set of points while connecting
these points with trajectory segments corresponding to a
particular vehicle model, as in, e.g., the Dubins GTSP [19]
are not directly applicable in GTSParc.

Another family of approaches, information sampling (IS)
techniques [3, 17] extensively sample the robot configu-
ration space to find a path/trajectory minimizing a given
objective function. The number of samples and thus the
computational complexity, however, grows exponentially
with the number of dimensions. The configuration space of
maneuvers in GTSParc has six dimensions, in contrast to two
or three dimensions in typical applications of IS. Therefore,
even small GTSParc instances will be hard to solve with cur-
rent IS techniques. Moreover, the search in IS is restricted
to a limited time horizon, while in the GTSParc we plan a
path that visits all regions.

When using both a UAV and a UGV in an outdoor
environment, the advantages of both platforms can be
combined. The UAV can be used for the fast yet inaccurate
estimate of radiation source locations and the UGV for
subsequent accurate localization. Therefore, there is no need
for time-consuming exploration of the whole environment
by the UGV. An example of such an application is presented
in [4], where the area is first inspected by a UAV, which
collects RGB images and radiation data of the area. Based
on the collected data, a cost map for ground-based motion
is created, and the UGV is then deployed to inspect regions
of interest using repeatedly the A* algorithm (thus being
suitable for detecting a single radiation source).

As the GTSParc is an extension to the GTSP, and a
GTSP solver was employed and modified in order to
solve the GTSParc, this subsection mainly discusses state
of the art in GTSP solvers. The GTSP is a combinatorial
optimization problem extensively studied in operations
research with many practical applications, such as location
routing problems, material flow system design, post-box
collection, stochastic vehicle routing or arc routing [21].

There are multiple methods of finding the optimal GTSP
solution in exponential time. The GTSP can be modeled
as an integer linear program (ILP) and solved with an ILP
solver. One of the first formulations was introduced in [22].
Formulations studied by [10] then inspired the problem-
specific exact branch-and-cut algorithm [9]. Another six
different integer programming formulations are compared

Path planning algorithm ensuring accurate localization of radiation sources 9577

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

15

in [30], with an emphasis on ‘compact’ formulations
(i.e., formulations, where the number of constraints and
variables is a polynomial function of the number of
nodes in the GTSP). A commonly used approach is to
transform the GTSP into the TSP using the Noon-Bean
transformation [28]. Then, an exact TSP solver such as the
Concorde [18] can be deployed.

Due to GTSP NP-hardness, new approaches on how
to find acceptable solutions to large problem instances in
polynomial time are still being proposed. The problem can
be transformed into the TSP and solved with a heuristic-
based TSP solver, e.g., the LKH [14], but numerous
heuristic approaches were adapted specifically for the
GTSP. Among these, the following three algorithms can
be considered as the most successful. The first one is the
GLKH solver [16], which is based on the Lin-Kernighan
k-opt heuristic used in the LKH. The GLKH is reported
to be tested on large-scale instances with up to 17180
sets and 85900 vertices, and it is focused on finding high-
quality solutions. The second one is a memetic GK heuristic
proposed in [12], which combines genetic algorithms with
a local search procedure. The GK yields high-quality
solutions with excellent runtime on medium-size GTSP
instances, but it does not scale well for problems with more
than 200 sets [6]. Finally, Smith and Imeson presented an
algorithm combining adaptive large neighborhood search,
simulated annealing, and two local search procedures. The
algorithm is called Generalized Large Neighborhood Search
(GLNS), and it is documented to often outperform both
GLKH and GK on several GTSP libraries [32]. It dominates
the other two solvers, especially on highly constrained
nonmetric instances, whereas the GLKH performs best
on the largest clustered Euclidean instances and the GK
on medium size metric instances. The proposed approach
to GTSParc is built on GLNS due to its most consistent
performance over a broad portfolio of GTSP instances
compared to the other two solvers.

2Methods

2.1 Planning task formulation

This subsection provides a formal definition of the GTSP
and elaborates on the complications arising from differences
between the practical task of searching for radiation sources
and the following standard GTSP definition.

Problem 1 (The Generalized Travelling Salesman Problem)
Assume a complete weighted graph G = (V , E, w) and a
partition of V into m sets PV = {V1, ..., Vm}, where

– V is a set of n vertices

Fig. 2 Solved GTSP instance 10C1k.0 from MOM-lib [15]

– Vi ∩ Vj = ∅ for all i �= j

–
m⋃

i=1
Vi = V

– E is a set of edges such that all vertices are connected,
apart from vertices from the same set

– w is a mapping assigning a weight to each edge w :
E −→ R

Lets also define a tour T over graph G as a closed
sequence of vertices and edges T = (v0, e0, .., vm−1, em−1),
where each edge connects two consecutive vertices - ei =
(vi, vi+1) and em−1 = (vm−1, v0). A set of vertices present
in the tour T is denoted as VT , a set of edges as ET .

Then, the objective is to find a tour in G that contains
exactly one vertex from each set and has a minimum length,
i.e., it minimizes the tour length w(T) defined as

w(T) =
∑

e∈ET

w(e).

An example of a solved GTSP instance is shown in Fig. 2,
where vertices of the same color belong to the same set.

2.2 Application specifics

There are aspects of the planning task solved that prevent us
from directly using the previously given GTSP formulation
and already implemented solvers. Due to the following, the
formulation has to be slightly changed, and the solver is
appropriately modified.

2.2.1 Vertex definition

Contrary to GTSP, where a vertex is typically a point in 2D,
a single vertex in the GTSParc represents a circular arc -

D. Woller and M. Kulich9578

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

16

Table 1 Vertex parameters in the GTSParc

Symbol Parameter description

x, y planar coordinates of circular arc center (m, m)

r arc radius (m)

α angle between coordinate frame x-axis and arc axis (rad)

ω angular size of the arc (rad)

a special trajectory segment such that passing by it allows
a precise radiation source detection in a corresponding
subregion. A minimal vertex representation consists of the
parameters given in Table 1, which are also depicted in
Fig. 3a.

2.2.2 Vertex weighting

As each vertex represents a segment of a robot trajectory,
its length influences the total trajectory cost. In the
standard GTSP definition given in Section 2.1 only
edges, not vertices, have weights assigned. Therefore,
this difference must be taken into consideration while
implementing various metrics in the algorithm. In GLNSarc,
the weight w of each vertex is defined as the length of the
arc: w = ωr .

2.2.3 Vertex connecting

There is no restriction on the direction in which a vertex is to
be passed, therefore connecting two vertices is ambiguous.
The original algorithm considers only the possibility that
edge weights depend on the vertex order - an edge from
a to b might have a different weight than an edge from b

to a (asymmetric GTSP). However, in the GTSParc, even
with a fixed order, there are still four ways to connect two
consecutive vertices, as shown in Fig. 3b.

2.2.4 Vertex validity constraint

While detecting sources of radiation along circular arcs,
only some arcs are potentially useful. Here, the vertices are
generated to fit the experimental setup presented in [24],
which uses a UGV fitted with a GPS unit, two mutually
shielded gamma detectors, and counting electronics. The
detection system is capable of measuring the rate of gamma
radiation in counts per second (CPS) and recording the
position of the measurement. It is partially directional due
to the use of two detectors - when moving along a curve, it
can be determined on which side of the curve the radiation
source is located.

The STE procedure used for determining source loca-
tions based on the measurements taken is called the Circular
Algorithm; it is described in [23] in detail and works as
follows. The theoretical shape of the radiation intensity Im

measured in CPS along a circle near a radiation source can
be described (according to the inverse square law and the
law of cosines) as

Im(φ) = Is

a2 + r2 − 2dr cos φ
, (1)

where Is states the source intensity in CPS in a distance
of 1 meter from the source, a is the distance from the
source to the circle’s center, r is the radius of the circle,
φ is the difference between the angular coordinates of
the UGV and the source with respect to the circle center
and d is the distance from the source to the closest circle
point. The function given in (1) can be used to interpolate
measurements taken along a circular segment, although
according to [23], quadratic interpolation is sufficient for
determining the location of the intensity peak and thus
the direction towards the radiation source. As it is also
known, whether the source lies inside or outside of the
circular segment (or better, the corresponding full circle)
and which subregion is covered by this particular segment
(see Section 2.6.1), an initial estimate of the source position

Fig. 3 Vertices (arcs)
in the GTSParc

Path planning algorithm ensuring accurate localization of radiation sources 9579

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

17

Table 2 Vertex validity constraint - parameters

Symbol Parameter description

r radius of circular arc (m)

d distance from the source to the closest segment

point (m)

l arc length (m)

θ angle between arc axis and line from arc center to

source (rad)

Is intensity of the radiation source in CPS (-)

IB background radiation in CPS (-)

K experimentally set constant (-)

and intensity can be made. This estimate is then iteratively
improved by applying the Gauss-Newton method, which is
reported to achieve an average accuracy of 17.8 cm RMS
(root mean square) in real-world experiments carried out by
the authors of [23].

It must be distinguished whether the peak in radiation
intensity measured along a circular segment corresponds
to a radiation source or fluctuations in the radiation
background. Given a source s = [xs, ys] with an intensity
Is , a robot position p = [xp, yp] and a level of background
radiation IB , the intensity Im measured by the robot is equal
to

Im = Is

(xs − xp)2 + (ys − yp)2
+ IB

according to the inverse square law. Then, the ratio between
the minimal and maximal intensity Im measured along a
circular segment must be higher than a constant K called
prominence [24] to identify a radiation source. For a circular
segment, this constraint can be rewritten as

Is

2r(r+d)
(

1−cos
(

l
2r

−|θ |
))

+d2
+ IB

Is

d2 + IB

< K . (2)

Individual parameters are described in Table 2 and their
numerical values used for vertex generation are given in
Table 3 (if constant). The values of Is and Im are in practice

Table 3 Parameter values used for Vval generation

Parameter Values

x(m) -5 to 5 sampled by 1

y(m) -5 to 5 sampled by 1

r(m) 1 to 5 sampled by 1

α(rad) π/6 to 2π sampled by π/6

ω(rad) π/6 to π sampled by π/6

Is(−) 6000

IB(−) 150

K(−) 0.7

estimated from the initial UAV measurements. In Fig. 1,
Is corresponds to the highest CPS values at the yellow hot
spots and IB to the lowest readings in the dark blue areas.
The measured intensity Im is taken along the yellow line,
marking the robot trajectory in Fig. 1b.

2.3 Generalized Large Neighborhood Search
(GLNS) description

GLNS is a GTSP solver introduced by S. L. Smith and F.
Imeson [32]. This subsection gives only a brief overview
of its functioning. A full description of the algorithm,
including a thorough performance comparison with other
approaches, can be found in [32].

GLNS implements an adaptive large neighborhood
search, which is a metaheuristic planning approach based
on the iterative application of constructive and destructive
procedures to a current solution. These procedures are
being selected randomly, using the roulette wheel selection
mechanism. The selection weights of individual procedures
are dynamically adjusted throughout the search process,
according to their success in previous iterations. Each
time a procedure improves the currently best solution, its

D. Woller and M. Kulich9580

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

18

selection weight after the next restart is increased and vice
versa.

GLNS pseudocode is given in Algorithm 1. First, an
initial random tour is generated (line 2). Then, the following
process runs iteratively. A pair of removal and insertion
heuristics is selected according to their selection weights
(line 6). These heuristics are then applied to remove
Nr vertices from the current tour T and insert different
Nr vertices, thus creating a modified tour Tnew (lines 7
to 10). The modified tour Tnew is subject to the local
optimization techniques MoveOpt and ReOpt (line 11)
and is consequently accepted or declined, while using a
simulated annealing criterion (line 15). This process repeats
until one of the stop criteria is met (line 19). After that,
the planner updates the selection weights of the heuristics
(line 20) and either starts the whole process again with a
new cold restart or returns the best tour found overall.

The acceptance criterion (line 15) uses a simulated
annealing procedure, which allows for accepting nonim-
proving tours Tnew with a small probability depending on
the temperature τ . The temperature τ is initialized at the
beginning of each cold restart (line 4) and then gradually
decreases in so-called initial descent. Then, after a cer-
tain number of nonimproving iterations, the temperature
is increased again. This is called a warm restart, which
also ends after a fixed number of nonimproving iterations.
The temperature updates are performed at the end of each
iteration (line 21). Each cold restart then consists of an
initial descent and several warm restarts.

2.4 Proposed GLNSmodifications towards GLNSarc

As described in Section 2.2, graph vertex in the GTSP
definition corresponds to a circular arc in the GTSParc.
This arc represents a part of a trajectory and has certain
properties, that have to be taken into account while
employing GLNS to solve the GTSParc. The main issues
arise from the fact, that the arc has a nonzero length
and that connecting two vertices is ambiguous. Necessary
modifications to the algorithm solving these issues are
described in detail in this subsection. To prevent confusion,
the word vertex is used when talking about circular arcs (i.e.,
the graph vertices in GTSParc) from now on.

2.4.1 Vertex duplication

In Section 2.2, a vertex is described by this tuple
of parameters -

〈
x, y, r, α, ω

〉
. This representation is

sufficient for problem formulation but impractical for
implementation, as it requires distinguishing between
various ways of vertex connecting. Instead of doing that, an
additional parameter sign ∈ {±1} is added. This parameter
determines in which direction the vertex is to be passed

through (-1 for clockwise passage, +1 for anticlockwise).
Naturally, this doubles the total number of vertices in
GLNSarc algorithm, as each vertex is inserted with both
possible sign values. On the other hand, the problem with
edge connecting is solved, because the original GLNS
allows for solving asymmetric GTSP, which is the case now.

2.4.2 Tour weight

Let T = (v0, e0, v1, e1, ..., vm−1, em−1) be a tour and w(T)

its weight. In GLNSarc, this weight is calculated as

w(T) =
m−1∑

i=0

w(ei)+
m−1∑

j=0

w(vj), (3)

where vi , ej are the vertices and edges from T and w(v),
w(e) are their respective weights. The bold expression in
(3) and in all the following equations is newly added in
GLNSarc, and it reflects the fact that vertices have nonzero
weight.

2.4.3 Cheapest insertion and unified insertions

GLNS contains several insertion heuristics that add vertices
from currently unused sets to an incomplete tour T

according to some simple rules. In all of these heuristics,
the insertion cost of a vertex vnew ∈ Vi , Vi ∈ PV \PT is
minimized. Here, PT contains those sets, that are already
visited by T . In the cheapest insertion, this cost is minimized
to select both Vi and vnew, whereas, in the remaining three
unified insertions, Vi is already selected by a different
mechanism and only vnew is sought. In all cases, the
insertion cost cins has to be modified to take the weight of
vnew into account:

cins = w(vj , vnew) + w(vnew, vj+1) − w(ej)+w(vnew).

Here, vj and vj+1 are two consecutive vertices in T

before insertion and w(vj , vnew), w(vnew, vj+1) and w(ej)

weights of corresponding edges.

2.4.4 Worst removal

Similarly to insertion heuristics, GLNS contains several
removal heuristics, removing vertices from a tour T while
using some simple rules. Worst removal removes such
vertex vj ∈ VT from tour T , that maximizes the
removal cost crem. GLNSarc modification is again rather
straightforward:

crem = w(ej−1) + w(ej) − w(vj−1, vj+1) + w(vj).

Path planning algorithm ensuring accurate localization of radiation sources 9581

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

19

2.4.5 ReOpt

Re-Opt, which is a local optimization subroutine, attempts
to optimize the choice of vertices while keeping the set order
fixed. This is achieved by performing a graph search through
all sets, in which only edges between two consecutive sets are
considered. When expanding from vertex x ∈ Vi to vertex
y ∈ Vi+1, current score in y is calculated as

score(y) = score(x) + w(x, y)+w(y).

Moreover, the first vertex a ∈ V1 is initialized with
score(a) = w(a), instead of zero.

2.4.6 MoveOpt

MoveOpt subroutine attempts to optimize the set order by
randomly removing a vertex vi from a tour T and reinserting
another vertex vj from the same set to any position in the
tour so that the insertion cost is minimized. This cost cins

is modified the same way as in the cheapest and unified
insertions, i.e.

cins = w(vj , vnew) + w(vnew, vj+1) − w(ej)+w(vnew).

2.4.7 Remarks

Some parts of GLNS were not formally modified, although
the original idea behind them might have changed in
GLNSarc due to task reformulation.

Set-vertex distance from a set V to a vertex u is still
defined as

dist (V , u) = min
vi∈V

(min(w(u, vi), w(vi, u))).

In GLNSarc, these distances are precomputed after vertex
duplication. Therefore, the value obtained corresponds to
the shortest path to or from u to V , no matter the sign of u,
v (= their orientation) or the edge (u, v) direction.

A different situation arises in the distance removal
heuristic. The motivation is to remove vertices from a
current tour T , which are “close to each other”. At each
iteration, a vertex vseed is selected randomly from the set
of already removed vertices Vrem. The next vertex vj to be
removed from T is obtained as

vj = arg min
vj ∈T

(min(w(vseed , vj), w(vj , vseed))).

Here, GLNSarc considers only edges between vertices vseed ,
vj and not their oppositely oriented variants available in the
GTSParc instance, as these variants are not present in T .

2.5 Edge weighting variants

Two variants of edge weighting in the GTSParc graph were
designed in the GLNSarc. The first one (line) calculates

Fig. 4 Edge parameters

the edge weight as the Euclidean distance between the
connected vertices endpoint and entry point. This metric is
commonly used in GTSP and similar problems, but it may
be of limited value in GTSParc, as it does not reflect the
rotation time needed at the vertex endpoints. Two edges with
a similar weight may thus result in considerably different
trajectory execution times. The second variant (lineWA) is
designed to reflect this, as it also considers the rotation time
needed at each endpoint.

Let v be a vertex in GTSParc, with parameters as in
Table 1. The vertex is oriented according to sign. Therefore,
it has an entry point vin and a leaving point vout . The robot
orientation in these points is then given by the tangent vector
vin, respectively vout , as shown in Fig. 4. Definitions of
individual edge weighting variants follow.

2.5.1 line

Let us consider vertices vi , vj connected by an edge eij

(from vi to vj). The edge weight is then calculated as

w(eij) = ‖vout
i − vin

j ‖

2.5.2 lineWA - line with weighted angles

Similarly to the line type, this variant connects vertex
endpoints with a straight line. Let us again consider vertices
vi , vj and an edge eij . Then, let δi be the smaller angle
between vector vout

i and eij (and δj between vin
j and eij

respectively), as shown in Fig. 4. The edge weight is then
defined as

w(eij) = ‖vout
i − vin

j ‖ + k(δi + δj), (4)

where k is an application specific constant, reflecting the
robot in-place turning speed.

2.6 Problem discretization

As was explained in Section 1, a single set of vertices in
the GTSParc corresponds to a subregion with the potential

D. Woller and M. Kulich9582

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

20

presence of a radiation source. A vertex in the GTSParc

then corresponds to a maneuver along a specific circular
arc. Equation (2) restricts the parameters of the circular
arc, so that accurate localization of the radiation source
is guaranteed. This constraint needs the source position to
be known; therefore, it cannot be directly applied when
sampling valid arcs covering the whole subregion - precise
source position is not known yet. Thus, the following
straightforward approach was adapted.

2.6.1 Sampling sets - covering subregions with vertices

The procedure of sampling valid vertices in GTSParc is
described in Algorithm 2.

The algorithm takes the following inputs: finite sets of
possible vertex parameter values x, y, r, α, and ω (described
in Table 1) and a subregion R. First, the subregion R is
uniformly densely covered with p potential source positions
s (line 2). Second, a circular arc is generated for each
combination of given parameter values (line 8). If the newly
generated vertex satisfies (2) for all p source positions, the
arc is assumed to be valid for the whole subregion (line 9

to 13). The newly generated valid vertex v is then added to
the set of valid vertices Vval in both orientations given by
sign (lines 16 to 18).

2.6.2 Reducing set size

The sampling procedure described in Section 2.6.1 gener-
ates a set of valid vertices Vval , whose size grows rapidly,
proportionally to the range of input parameters x, y, r, α

and ω. However, some vertices sampled may not be actually
useful. A procedure for utilization-based Vval reduction is
proposed in this section.

The contribution of some vertex vi from a set Vval to the
total tour weight w(T) depends only on its neighbors vi−1

and vi+1 in a tour T . If some vertex vi ∈ Vval does not
minimize the partial cost

cpar = w(vi−1, vi) + w(vi) + w(vi, vi+1) (5)

for any possible configuration of its neighbors vi−1 and
vi+1, it is redundant and can be removed from Vval .

To perform the vertex utilization analysis, a square grid
of points is generated around the set Vval . An example of
such a grid applicable for edge type line is shown in Fig. 5a.
Points in this grid correspond to the endpoints of vertices
vi−1, vi+1 and they are sufficient for determining the
relevant edge weights w(vi−1, vi), w(vi, vi+1). A sufficient
set of potentially usable vertices Vsuf is then extracted from
Vval by testing all possible combinations of these endpoints
and keeping only those vertices from Vval minimizing (5)
for any of these combinations. This process is described in
Algorithm 3.

The accuracy of this method depends on the set of grid
parameters P . For the edge type line, where edge weight

Path planning algorithm ensuring accurate localization of radiation sources 9583

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

21

Fig. 5 Grids used for reducing
Vval size

is calculated as the Cartesian distance between vertices
endpoints, these parameters are grid size size and grid
resolution posRes. A point in the grid then corresponds
to a point in 2D. In the case of the lineWA type, which
also considers the amount of rotation needed in each
endpoint, a point in the grid consists of a point in 2D
and a vector, as shown in Fig. 5b. Thus, there must be
an additional parameter angleRes, which determines the
angular resolution used when sampling multiple vectors in
different directions from each point.

Suitable values of these parameters depend on the set
Vval and on the edge type used. A simple method for
extracting a sufficient set Vsuf while refining the parameters
P until the size of Vsuf converges is proposed and described
in Algorithm 4. First, Vsuf is extracted using the reduction
procedure described in Algorithm 3 with initial parameters
P (line 1). Each parameter from P is then repeatedly refined
according to the refinement step from Table 4 (line 5) and
the Vsuf is extracted again (line 6). Refining of the current
parameter stops when there is no increase in the size of Vsuf

(line 8).
As the parameters are tuned sequentially, it may happen

that refining the latter parameter enables further refining and
subsequent increase in Vsuf size for some of the preceding
parameters. To cover this possibility, Algorithm 4 can be run
repeatedly with the previously found parameters used as an

Table 4 Parameter values used for Vsuf generation

Parameter Initial value Refinement step

size(m) 10 size = size + 1

posRes(m) 1 posRes = posRes/2

angleRes(rad) π/6 angleRes = angleRes/2

initial solution in the next run, until there is no change in
Vsuf size over one whole run.

The approach presented does not guarantee that the
generated set Vsuf fully substitutes the original set Vval -
especially when the refinement steps or the initial values of
P are poorly chosen. However, the experiments presented in
Section 3.4 show that there is no significant decrease in the
quality of the solution obtained when using Vsuf instead of
Vval in GTSParc instances, whereas the runtime is reduced
dramatically and much larger areas can be covered.

2.7 DenseOpt optimization

As explained in Section 1, the planning task is originally
continuous, as each set can be covered by infinitely
many vertices, given that they respect the constraint in
(2). Sampling a finite number of vertices is enforced by
using GLNS, which is designed for discrete problems. The
inevitable consequence is that the solution obtained by
GLNSarc will probably never be optimal in the original
continuous domain. This drawback is accepted, as GLNSarc

D. Woller and M. Kulich9584

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

22

is a metaheuristic-based planner, which does not give any
guarantees about solution optimality as well. However, the
quality of the final solution is negatively influenced by
the sampling density. Apart from that, once the GLNSarc

reaches a good quality solution, further convergence tends
to be slower and slower. In this phase, it may be more
beneficial to perform a simple solution refining in the
continuous domain, rather than spending more time solving
the optimization problem in the discrete problem. This is the
exact purpose of the proposed DenseOpt procedure.

DenseOpt is a newly proposed intensification optimiza-
tion technique which performs local search in the contin-
uous domain, after the solution in the discrete domain is
returned by GLNSarc. It is named to match the other two
local optimization techniques defined in GLNS - MoveOpt,
and ReOpt. Given a tour T obtained by GLNSarc, DenseOpt
searches the close neighborhood of each vertex in T and
randomly samples new admissible vertices, not present in
the discrete GTSParc formulation G = (V , E, w). If the
newly sampled vertex improves the weight of T , it replaces
the originally present vertex from the same set. The process
is described in Algorithm 5.

The whole tour T is repeatedly optimized until there is
no improvement in its weight. In each iteration, a random
order of resampling is created by shuffling the array indices

(line 4). Then, each vertex in the tour T is resampled
Ns times (lines 8-9) as vnew. Sampling of vnew is limited
to a predefined range of parameters r, α, and ω. The
original density of sampling in the GTSParc instance solved
determines this range. Vertex vnew is sampled anywhere

between its closest neighbors. If vnew improves tour cost
w(T), it is added to T and vindex is removed (lines 10-
12). Moreover, the edges eindex−1 and eindex are newly
generated, so that the newly added vnew is connected to the
rest of the tour T (line 13). As the vertex vindex in T is
being replaced continuously, its original position is stored
in copy v, so that new vertices vnew are sampled in the same
subregion (line 8). Parameter Ns was experimentally tuned
(see Section 3.5) and set to Ns = 300.

3 Results

This chapter documents and interprets the experiments
carried out. It is focused on thoroughly demonstrating
GLNSarc capabilities, performance, and assessing the
contribution of the additional solution components. It does
not provide a comparison with other methods, which is due
to several reasons. First, the problem formulation is new
and was not fully addressed before. Second, the application
previously relied on a human operator input, which is not
a feasible approach for thorough experimental comparison.
Third, the relevant methods for similar problems are not
directly applicable in the considered application without
nontrivial adaptation.

The proposed algorithm considers three criteria:

1. source localization in a preselected region is to be
guaranteed,

2. all preselected regions are to be inspected,
3. the total trajectory length over all regions is to be

optimized.

Adaptive methods (such as [2, 23] or [24]) fully respect only
the first criterion and can be iteratively applied to satisfy
the second, given that the already discovered sources are
removed before continuing the search. Proactive methods
(e.g., the zig-zag pattern [39]) are designed to satisfy only
the first criterion and are suitable for localizing multiple
sources without extraction. However, no adaptation of a
proactive method that would consider also the second and
third criteria is known to us, apart from the proposed
one. In the preceding work [23], the UGV trajectory
was created manually and meeting all three criteria
depended on a human operator experience. For obvious
reasons, this approach is not suitable for experimental
comparison.

All instances solved in fast and default mode were solved
50 times so that the results could be processed statistically.
This number was reduced to 5 in case of the slow mode due
to its excessive time requirements. All experiments were
carried out on a single core of Lenovo P330 desktop PC with
an Intel Core i7-8700, 3.2 GHz CPU, and 32 GiB of RAM.
The GLNSarc was implemented in C++.

Path planning algorithm ensuring accurate localization of radiation sources 9585

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

23

3.1 Generating problem instances

It was described in Section 2.6.1, how to sample a set of
valid vertices Vval , covering a subregion R. In all generated
problem instances, the subregion R was set to a square with
the dimensions of 3 × 3 meters. The size of the subregion
is limited by the application-dependent parameters Is, IB ,
and K . Actual values used for generating Vval are given
in Table 3, as well as values of constants used in the
constraint function. In real-world experiments, the
values of Is and IB are estimated from the UAV collected
data.

The obtained set Vval is shown in Fig. 6a, where
the subregion R is marked by the green line, and the
generated vertices are displayed in blue. Vertices are
partially transparent, so the darker shade of some segments
indicates that multiple vertices are overlapping. In total, the
set contains 3824 vertices.

The set Vval was subsequently reduced by performing the
set reduction described in Section 2.6.2. An example of a
reduced set Vsuf is shown in Fig. 6b. This particular set is
generated for edge type line by reducing the set Vval from
Fig. 6a. It contains only 120 vertices (compared to 3824
vertices in Vval). Initial values and refining steps for the
parameters P are given in Table 4. Parameters common for
line and lineWA edge types have identical values. Final
values of grid parameters P are size = 16 meters and
posRes = 0.125 meters.

If a region of interest discovered by the UAV in the initial
phase is larger than 3 × 3 meters, or if there are multiple
regions, they need to be split into smaller subregions of an
appropriate size. E.g., a region of size 18 × 18 meters can
be covered by 36 subregions of size 3 × 3 meters, as shown
in Fig. 7, so that the successful radiation source detection
is guaranteed in any point of the area. Each subregion

Fig. 7 Problem instance tiles suf/6x6 4320

corresponds to a set of vertices in the GTSParc, and vertices
from the same set are displayed in the same color.

3.2 Datasets description

Three datasets were created to evaluate the GLNSarc

performance, behaviour and tune the denseOpt parameter:
tiles full, tiles suf and patterns. The datasets
are available at [38].

Dataset tiles full consists of 14 problems of
increasing size, which were created by placing the full set
of 3824 valid vertices Vval described in Section 2.6.2 in a
tiled pattern, similarly to the problem displayed in Fig. 7.
The largest problem in this dataset covers an area of 12×15
meters, which corresponds to 20 sets (each covering 3 × 3
meters) and 76480 vertices.

Fig. 6 Generated sets
of valid vertices

D. Woller and M. Kulich9586

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

24

Fig. 8 patterns dataset -
examples of instances

Dataset tiles suf was created in the same manner,
but it is based on the reduced set Vsuf containing only
120 vertices, which was generated for edge type line.
The dataset contains a total number of 53 problems, while
the largest problem covers an area of 30 × 30 meters,
corresponding to 100 sets and 12000 vertices.

Finally, dataset patterns is also based on the Vsuf

set, and it contains problems of medium size ranging
between 24 and 32 sets. These problems are created with
the intention to capture the behavior of the algorithm on
structurally varied problems. It contains fifteen problems,
where the sets are clustered by 3, 4, or 6, six problems with

Fig. 9 Planning time across
planner modes

0 2000 4000 6000 8000 10000 12000
n

0

10

20

30

40

50

60

70

80

tim
e

 (
s)

Planning time in fast mode

mean ± stdev
min, max

0 2000 4000 6000 8000 10000 12000
n

0

50

100

150

200

250

tim
e

 (
s)

Planning time in default mode

mean ± stdev
min, max

0 2000 4000 6000 8000 10000 12000
n

0

1

2

3

4

5

6

7

8

tim
e

(s
)

10 4 Planning time in slow mode

mean ± stdev
min, max

Path planning algorithm ensuring accurate localization of radiation sources 9587

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

25

sets arranged in a letter-shaped pattern, and ten problems
with sets distributed randomly. Two examples are shown in
Fig. 8.

3.3 GLNSarc modes of operation

GLNS comes with three sets of parameters corresponding
to the following planner modes - fast, medium (default),
and slow. These modes differ most notably in the number
of cold and warm restarts, parameters determining the total
number of iterations, and the frequency of applying the local
optimization techniques MoveOpt and ReOpt. A full list of
all values can be found in [32]. Individual settings were
not further modified or tuned, but they were compared in
terms of quality of solution and runtime on the tiles suf
dataset. The problems in this dataset have a very similar
structure, but they gradually increase in size; thus they
are suitable for scalability and applicability assessment of
individual modes.

Figure 9 shows the planning time needed by individual
modes in relation to the problem size, respectively, the
number of vertices n. Consistently with the runtime analysis
provided in [32], all dependencies plotted are polynomial.

Instances of up to 2700 vertices were always solved
within 1 second in the fast mode; thus the GLNSarc can
be used as an online planner for smaller problems. Mean
planning time for the largest problem of 12000 vertices is
59.9 seconds, while in the worst case, the planning took 78.3
seconds. Fast mode time demands are therefore moderate
even for larger instances. The best and worst-case planning
times are circa 30% from the mean value, while the standard
deviation is up to 10% of the mean. Planning times in the
default mode (Fig. 9b) are about one order higher than in the
fast mode and show slightly lower deviations (with extrema

0 2000 4000 6000 8000 10000 12000
n

0

50

100

150

200

250

300

350

400

450

w
ei

gh
t (

-)

Tour weight in fast mode

mean ± stdev
min, max

Fig. 10 Final tour weight in fast mode

within 15% from the mean and standard deviation up to 6%
of the mean). As for the slow mode (Fig. 9c), planning times
are about three orders higher than in the fast mode, thus
solving problems with more than 4000 vertices in terms of
hours. Individual problems were solved at most 5 times due
to the excessive time demands of the slow mode; therefore,
the remaining statistical properties are not conclusive and
comparable to the other modes.

As for the final tour weight obtained - GLNSarc

performance in the fast mode on the tiles suf is
visualized in Fig. 10. The resulting weights show very low
diversity - the worst tour weight is always within 2.5% from
the best weight found and within 1.2% from the mean.

In the case of the default and slow mode, the diversity
is even lower and not visually apparent when plotted in the
same manner.

Figure 11 compares the relative difference of the mean
best weight found across all three modes. Weights obtained
in the slow mode are generally the best; thus they are being
taken as a baseline. The difference is then calculated as
100w−wslow

wslow
, where wslow is the mean final weight for the

particular problem in the slow mode and w is the same
value for the currently compared mode. Slow mode results
are not displayed in the plot, as they would be compared to
themselves, and the corresponding markers would naturally
all lie on the line marking zero relative difference. The
graph shows that the default mode is at most by 1.5% worse
than the slow mode and the fast mode at most by 2.5%.
The interpolated mean weight difference initially increases
with problem size but appears to stabilize or even slightly
decrease for the largest problem instances.

In conclusion, both the fast and default GLNSarc mode
performance are sufficient for the intended application, as
the planning requires several minutes at worst. The planning

0 2000 4000 6000 8000 10000 12000

n

-0.5

0

0.5

1

1.5

2

2.5

w
ei

gh
t d

iff
er

en
ce

 fr
om

 s
lo

w
 m

od
e

(%
)

Relative tour weight difference across modes

fast mode
quadratic interpolation
default mode
quadratic interpolation

Fig. 11 Final tour weight comparison across planner modes

D. Woller and M. Kulich9588

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

26

is to be carried out on a base station between the UAV and
the UGV operation, so the plan is not needed instantly and
minutes are acceptable for the operating staff. On the other
hand, using the slow mode can be considered infeasible,
as the planning times exceed hours. In terms of solution
quality, the default mode produces solutions worse by up
to 1.5% than the slow mode, but this gap can be easily
closed by the proposed DenseOpt postprocessing technique,
as documented in Section 3.5.

3.4 Planning with full vs. reduced sets

This subsection documents and evaluates the impact of
reducing the set size (described in Section 2.6.2) on the
planning time and the quality of the solution. For this
purpose, the datasets tiles suf and tiles full are
used. All problems from the tiles full are present
in the tiles suf, meaning that the same area is being
covered. However, the sampling density in the tiles suf
problems is much lower, as each subregion of 3 × 3 meters
is covered by the reduced Vsuf set (120 vertices), rather than
by the full and naively sampled Vval set (3824 vertices).

Figure 12 shows the planning time needed for solving all
problems in both datasets in the fast mode. The planning
time is plotted against the number of sets m, as the number
of vertices n differs greatly for the same problems. First,
even though the planning times for the largest problems
in the tiles full dataset are not unacceptable (mean
planning time is at most 167 seconds), the corresponding
graph ends at m = 20, as the dataset does not contain larger
problems. This is due to the fact that the limiting factor
of the GLNSarc are the memory requirements of storing all
edge weights, not the planning time (at least in the fast

0 20 40 60 80 100

m

0

20

40

60

80

100

120

140

160

180

200

tim
e

(s
)

Planning time - full X reduced set

tiles_full: mean ± stdev
tiles_full: min, max
tiles_suf: mean ± stdev
tiles_suf: min, max

Fig. 12 Planning time comparison - full vs. reduced set

mode). The current implementation could handle instances
with circa 8−9×104 vertices on the hardware used. Second,
the planning time needed for solving the tiles full
problems is significantly higher than for the tiles suf.
According to [32], GLNS time complexity in the fast mode
in O(mn). The number of vertices n is a linear function of
m in both datasets, so the time complexity is O(m2), and the
planning times should differ by a constant factor c, which
can be estimated to c = 300.

Figure 13 shows the difference in the final tour weight
for those problems in both datasets that are identical in
terms of the number of sets and their distribution in space.
Its value is calculated as 100

wsuf −wf ull

wf ull
, where wf ull is

the mean final weight for a problem from tiles full
and wsuf is the mean final weight for the corresponding
problem from tiles suf. There is no apparent trend,
but it can be said that the mean final tour weight of a
problem from tiles suf is at most by 0.1% worse than its
counterpart from tiles full and that this happens only
for three problems. In the case of the remaining instances,
the score obtained with Vsuf is equal to or better than the
score obtained with Vval . When compared to the relative
differences across different planner modes shown in Fig. 11,
the effects of using Vsuf instead of Vval have a negligible
impact on the quality of solution and the set size reduction
described in 2.6.2 can be considered highly beneficial.
Given that problems with n = 75000 are solvable, the
GLNSarc can be applied to problems with 625 Vsuf sets,
thus cover an area of 75 × 75 meters (5625 m2). Without
the reduction, the GLNSarc could store at most 20 Vval

sets covering an area of modest 180 m2. Naturally, the
size of the area depends on the parameters Is and IB ,
which are estimated during the initial UAV reconnaissance.

2 4 6 8 10 12 14 16 18 20

m

-0.15

-0.1

-0.05

0

0.05

0.1

w
ei

gh
t d

iff
er

en
ce

 fr
om

 fu
ll

se
t p

ro
bl

em
 (

%
)

Relative tour weight difference - full X reduced set

Fig. 13 Final tour weight comparison - full vs. reduced set

Path planning algorithm ensuring accurate localization of radiation sources 9589

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

27

Fig. 14 Solved problem
tiles suf/4x4 1920

Their values in Table 3 used for Vval generation are taken
from [23], where the experiments were carried out in an area
of cca 436 m2.

In conclusion, the proposed set reduction technique is
necessary for solving instances of reasonable size. It has
only a negligible effect on the solution quality, compared to
planning with unreduced data.

3.5 DenseOpt

This subsection documents the performance of the
DenseOpt optimization described in Section 2.7. DenseOpt
is performed once the GLNSarc finishes planning on the dis-
cretely defined problem and attempts to improve the tour
weight by sampling new previously unconsidered vertices
in a close neighborhood of the vertices present in the tour.

Figure 14 shows the solved problem 4x4 1920 before
and after performing DenseOpt. In this particular case,
DenseOpt improves the tour weight by about 18%.
Interestingly, it also almost entirely eliminates the mutual
crossing of neighboring circular segments, even though the
results were obtained with edge type line.

DenseOpt is run until there is no improvement in the
tour weight and has only one parameter Ns . This parameter
determines how many times is every vertex resampled in
each DenseOpt iteration. Figure 15 shows the progress of
tuning this parameter on the dataset patterns in the fast
mode, where the relative mean tour weight improvement
is plotted against the value of Ns . The improvement is
calculated as w(T)−wdense(T)

w(T)
; here, w(T) is the original

mean tour weight and wdense(T) is the mean weight
after performing DenseOpt. The plot shows the seemingly
logarithmic growth of the relative improvement w.r.t. Ns .
However, the logarithmic interpolation plotted along the
data reveals that the improvement tends to slow down and

lies below the interpolating function for Ns ≥ 250. This is
not surprising, as the relative improvement is bounded to be
less than 100%, while the limit of a logarithm on an arbitrary
base is infinity. Figure 16 shows the time requirements of
the DenseOpt w.r.t. Ns . The dependency turns out to be
linear, thus the higher value of Ns (number of resampling
attempts per vertex) does not accelerate the convergence
of the DenseOpt optimization towards a local optimum.
Instead, it presumably enables to reach the local optimum in
the continuous domain with higher precision, thus resulting
in a slightly better final score.

Based on these observations, the parameter value is set to
Ns = 300 in the following experiments, which corresponds
to a mean improvement of circa 7% and an average duration
of 1 second on the patterns dataset.

0 50 100 150 200 250 300 350 400

N
s
 parameter

4

4.5

5

5.5

6

6.5

7

7.5

M
ea

n
to

ur
 w

ei
gh

t i
m

pr
ov

em
en

t (
%

)

Tuning DenseOpt - score improvement

mean improvement
logarithmic interpolation

Fig. 15 Tuning DenseOpt - score

D. Woller and M. Kulich9590

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

28

0 50 100 150 200 250 300 350 400

N
s
 parameter

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

tim
e

(s
)

Tuning DenseOpt - time requirements

denseOpt time
linear interpolation

Fig. 16 Tuning DenseOpt - time

DenseOpt performance after parameter tuning is evalu-
ated on the dataset tiles suf. Figure 17 shows the final
tour weight before and after DenseOpt across the whole
dataset. It can be observed that the plotted statistical proper-
ties (minimum, maximum, and standard deviation) are not
affected by the DenseOpt in terms of distance from the
mean. Figure 18 then shows the relative improvement. The
improvement is at least 10%, and it approaches 20% with
increasing problem size. When averaged across the whole
dataset, the mean improvement slightly exceeds 18%. In
contrast, the mean improvement on the patterns dataset
shown in Fig. 15 in only about 7%. Therefore, the effect
of DenseOpt is heavily dependent on the problem struc-
ture. Individual sets in the tiles suf problems are placed
close together, whereas the sets in the patterns dataset
are often sparsely distributed across a larger area in small

0 2000 4000 6000 8000 10000 12000

n

0

50

100

150

200

250

300

350

400

450

w
ei

gh
t (

-)

Tour weight - before and after denseOpt

orig. weight: mean ± stdev
orig. weight: min, max
after denseOpt: mean ± stdev
after denseOpt: min, max

Fig. 17 Tuned DenseOpt performance - absolute

0 2000 4000 6000 8000 10000 12000

n

10

12

14

16

18

20

22

24

26

28

30

w
ei

gh
t d

iff
er

en
ce

 (
%

)

Tour weight - rel. improvement after denseOpt

Fig. 18 Tuned DenseOpt performance - relative

clusters and thus smaller improvements can be achieved
through local resampling of vertices.

Finally, Fig. 19 shows the time requirements of DenseOpt
compared to the GLNSarc planning time w.r.t. m. DenseOpt
times are interpolated with a quadratic function; thus, the
time complexity can be estimated as O(m2), given that all
sets are the same size. The same applies to the planning
time, which is O(mn), therefore O(m2) for fixed size sets.
For smaller instances, DenseOpt requires more time than
planning. At 32 sets, the time requirements of planning
and DenseOpt are both circa 2.5 seconds, and for larger
instances, planning time becomes dominant.

It was shown in Section 3.3, that solving the tiles suf
instances in slow mode yields at most by 2.5% better score
than the fast mode and by 1.5% than the default mode.
In both cases, the improvement attainable by DenseOpt

0 20 40 60 80 100

m

-10

0

10

20

30

40

50

60

tim
e

(s
)

DenseOpt time complexity

mean planning time
quadratic interpolation
mean denseOpt time
quadratic interpolation

Fig. 19 Tuned DenseOpt time requirements

Path planning algorithm ensuring accurate localization of radiation sources 9591

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

29

is several times higher and obtained at a fraction of the
additional planning time required by a slower planner mode.
Therefore, using the DenseOpt is highly beneficial, as
it enables to fundamentally reduce the computation time
dedicated for solving the underlying discrete optimization
problem and obtain a better quality solution in the
continuous domain.

3.6 Set reduction for various edge types

The procedure for sampling valid vertices described in
Section 2.6.1 produces a set of 3824 vertices, denoted as
Vval . This set was then reduced to Vsuf (Section 2.6.2), a
sufficient set of valid vertices generated for edge type line.
Using Vsuf instead of Vval was then experimentally shown
to be highly beneficial in Section 3.4, while planning with
the edge type line. This subsection presents the results of
the set reduction for the edge type lineWA with various
angle-weighting constants k.

While generating Vsuf for edge type line, the reduction
procedure terminated as proposed, i.e., when there was no
further increase in the set size after refining both parameters
size and posRes of the reduction grid (Section 2.6.2). In
the case of lineWA, the set reduction procedure turned
out to be excessively time-consuming, as the reduction grid
has one more parameter angleRes and is effectively 3-
dimensional. Therefore, the reduction for lineWA variants
was terminated after posRes was refined to 0.5 meter and
angleRes remained at initial value π

6 .

Table 5 Vsuf size for various edge types

Edge type Angle weight k Vsuf size

line 0 120

lineWA 0.1 184

lineWA 0.5 416

lineWA 1 634

lineWA 5 2366

lineWA 10 3684

The generated sets are shown in Fig. 20 and their sizes
given in Table 5. Figure 20 shows the previously used Vsuf

generated for edge type line. Figure 20b-f show the reduced
set for lineWA with various values of angle weight k. It can
be observed that the generated set size increases together
with k. For k = 0.1, the generated set contains 184 vertices,
whereas for k = 10, it contains 3684 vertices out of 3824
vertices originally present in Vval . An explanation for this
trend is that the lineWA edge is weighted according to
(4). As the angles δi and δj are assigned greater weight k,
the influence of the distance between neighboring vertex
endpoints and vertex length decreases. The edge weights
then no longer correspond to Euclidean distances, and every
vertex is potentially usable given that its endpoints are
suitably oriented. Thus, no significant reduction can be
achieved for high values of k.

In conclusion, the proposed set reduction technique
enables a significant reduction of the vertex sets, which is

Fig. 20 Vsuf for various
edge types

D. Woller and M. Kulich9592

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

30

crucial for solving larger instances. However, the reduction
is most effective for metric edge weighting.

3.7 Planning with various edge types

Planning with the edge type lineWA was tested on one
problem from the dataset tiles suf and on the whole
patterns dataset. These datasets are based on the Vsuf

set generated for the edge type line. In a real application,
problems should be based on Vsuf generated for the edge
type used later in planning. However, creating a separate
dataset for each edge type would distort the following
comparison of planner performance, as the equivalent
problems in different datasets would greatly vary in the
number of vertices.

Figure 21 shows the problem tiles suf/4x4 1920
solved with four different angle weights k in edge type
lineWA after performing DenseOpt. In the case of the
smallest value k = 0.5, the final tour does not differ
much from the solution for edge type line, which is shown
in Fig. 14. With the increasing value of the constant k,
the tour is being straightened at the cost of increasing its
Cartesian length, as the algorithm minimizes costly turning
maneuvers. For k = 10, the black straight line segments
(edges) smoothly connect to the red circular segments
(vertices), and the trajectory resembles a Dubins path, even
though this property is generally not guaranteed.

Fig. 21 Solved 4x4 1920 with various edge types

0 2 4 6 8 10 12 14 16

Angle weight k

5000

5100

5200

5300

5400

5500

5600

ite
ra

tio
ns

 (
-)

Planning with lineWA - no. of iterations

Fig. 22 Planning time for various edge types

Another interesting trend is revealed in Fig. 22, which
shows the mean number of iterations needed per problem
averaged over the whole patterns dataset for different
values of k. All problems in the patterns dataset have
similar size, ranging between 24 and 32 sets of 120 vertices.
The mean number of iterations starts at circa 5000 for
k = 0.1 and increases slightly above 5500, where it settles
for k > 5. The GLNSarc terminates after a fixed number
of nonimproving iterations in each warm restart, and the
results presented indicate that for higher values of k, more
iterations are needed to achieve that point. In other words,
the local optimum is more difficult to reach.

An explanation for this is that the sets in the dataset
patterns are spatially clustered, and the edge weights
are close to Euclidean distances for small values of k.
Both of these properties gradually cease to apply, and for
k > 5, the edge weights are determined primarily by the
mutual orientation of vertex endpoints. Thus, the GTSParc

instances become nonmetric, i.e., they do not satisfy the
triangle inequality. Thus, the problems are more difficult to
solve, and the planning time increases proportionally to the
number of iterations.

In summary, planning with various edge types can
be used to produce smooth trajectories, although without
guarantee. Using nonmetric edge weighting increases the
computational requirements, but not significantly.

3.8 Planning with obstacles

The experimental work [24] motivating the development
of GLNSarc assumed that the terrain is obstacle-free, as
its primary focus was on determining the accuracy of the
STE. This assumption is generally too strong for practical
deployment. However, GLNSarc can be directly used for

Path planning algorithm ensuring accurate localization of radiation sources 9593

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

31

Fig. 23 Planning with obstacles

planning in an environment with obstacles, given that a
map of the environment is available. There are two extra
steps needed before the actual planning, both concerning the
preparation of input data.

First, vertices colliding with obstacles in the map must
be removed from the instance. Second, the edges connect-
ing the vertices must be planned to avoid the obstacles. For
both steps, the VisiLibity1 [29] C++ library was used. This
library allows for collision checking and shortest path plan-
ning in a provided polygonal map. A single edge then
corresponds either to a straight line or to a sequence of mul-
tiple straight lines avoiding obstacles, whereas its weight is
determined as the length of the line or the sequence of lines.
In the following examples, the angle weighting constant
k is set to zero; thus, sharp turning is not penalized here.

Figure 23a shows a planned path on an outdoor map
potholes from the dataset [20]. Similarly to the previous
figures, the black segments correspond to edges, red
segments to vertices (circular arcs, where the measurements
are taken), and green squares to subregions covered by a
single vertex. The grey polygons then correspond to an
impassable terrain. It is assumed here that these polygons
do not affect the radiation propagation. Therefore, the
sources can be located anywhere on the map, including the
polygons.

Figure 23b shows a planned path in an indoor envi-
ronment. Here, the walls are considered impassable for
radiation. Thus, only such vertices that do not collide with a
wall and are located in the same room as the covered green
subregion are used for planning.

These examples are meant to illustrate that the GLNSarc

is not limited to planning in an obstacle-free outdoor
environment. Application in more realistic environments is
straightforward and the only additional step is the extraction
of invalid vertices from the problem instance.

4 Conclusions

A new planning problem with a background in the search
of sources of gamma radiation by a UGV in an outdoor
environment was formulated as a GTSP variant and named
GTSParc. GTSParc is a combinatorial optimization task in
the space of maneuvers guaranteeing source detection in
preselected regions. To solve this problem in the discrete
domain, a state of the art GTSP solver called GLNS was
modified and adapted for the application - the new solver is
referred to as GLNSarc.

The paper describes all necessary modifications of the
GLNS and evaluates the GLNSarc performance in multiple
experiments on three generic datasets. These datasets are
made publicly available at [38]. Method performance
is documented to be sufficient for deployment in the
motivating application, both in terms of time requirements
and scalability. To achieve this, two additional components
are proposed. The first one is a preprocessing technique,
which significantly reduces the GLNSarc input data size
based on vertex utilization analysis. The technique is shown
to have a negligible effect on the solution quality and
enables solving instances an order of magnitude larger, thus
exploring a larger area. The second one is a postprocessing
technique called DenseOpt, which refines the GLNSarc

obtained solution in the continuous domain. The DenseOpt
proves to be a more time-efficient way of further improving
the solution quality than using a slower GLNSarc mode
or denser vertex sampling. Moreover, two variants of edge
weighting are considered and compared - Euclidean (line)
and Euclidean with weighted angles (lineWA). It is also
demonstrated that GLNSarc can be used for planning in the
polygonal domain with obstacles. These setups document
the applicability of GLNSarc while considering different
vehicle models or environments.

D. Woller and M. Kulich9594

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

32

The development of GLNSarc was motivated by the
experimental work described in [24]. The authors of [24]
designed a multirobotic system consisting of a UAV
and a UGV, deployed it in real-world experiments, and
evaluated the accuracy of the detection. The UAV was
used for fast identification of regions of interest, and
the UGV subsequently performed accurate localization
in the preselected regions. However, planning the UGV
trajectory in this scenario relied on a human operator, which
does neither guarantee the source detection nor does it
produce optimized trajectories. The GLNSarc is designed
to automate the planning of the UGV trajectory, while
guaranteeing the detection in all preselected regions and
producing a near-optimal trajectory. The GLNSarc is unique
in this combination of criteria.

Concerning future work - the GLNSarc can be directly
applied to planning with splines, Dubins curves, or in
environments with obstacles that are not polygonal, given
that the trajectory segment weights are precomputed. The
main issue arising here is the time demand of the weight
precomputing. Comparing these variants thoroughly would
provide a valuable insight into the applicability of discrete
optimization techniques in similar robot routing problems.

Acknowledgements This work has been supported by the European
Regional Development Fund under the project Robotics for Industry
4.0 (registration no. CZ.02.1.01/0.0/0.0/15 003/0000470). The work
of David Woller has been also supported by the Grant Agency of the
Czech Technical University in Prague, grant SGS18/206/OHK3/3T
/37.

Declarations

Competing interests The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

1. Arain MA et al (2015) Global coverage measurement planning
strategies for mobile robots equipped with a remote gas sensor. In:
Sensors (switzerland), vol 15.3, pp 6845–6871. issn: 14248220,
https://doi.org/10.3390/s150306845

2. Bourne JR, Pardyjak ER, Leang KK (2019) Coordinated
Bayesian-Based bioinspired plume source term estimation and
source seeking for mobile robots. IEEE Trans Robot 35.4:967–
986. issn: 19410468. https://doi.org/10.1109/TRO.2019.2912520

3. Chen W, Liu L (2019) Pareto monte carlo tree search for multi-
objective informative planning. In: Robotics: Science and systems
XV. https://doi.org/10.15607/rss.2019.xv.072

4. Christie G et al (2017) Radiation search operations using
scene understanding with autonomous UAV and UGV. J Field
Robo 34.8:1450–1468. issn: 15564959. https://doi.org/10.1002/
rob.21723

5. De Geer LE (2004) Currie detection limits in gamma-ray spec-
troscopy. Appl Radiat Isotopes 61.2-3:151–160. issn: 09698043.
https://doi.org/10.1016/j.apradiso.2004.03.037

6. Drexl M, Gutenberg J (2012) On the generalized directed rural
postman problem. Tech. rep Gutenberg School of Management
and Economics

7. Ebenezer J, Murty S (2016) Deployment of wireless sen-
sor network for radiation monitoring. In: 2015 Interna-
tional conference on com- puting and network communi-
cations (coconet 2015). Institute of Electrical and Elec-
tronics Engineers Inc., pp 27–32. isbn: 9781467373098.
https://doi.org/10.1109/CoCoNet.2015.7411163

8. Ferri G et al (2007) Explorative particle swarm optimiza-
tion method for gas/odor source localization in an indoor
environment with no strong air-flow. In: 2007 IEEE Inter-
national conference on robotics and biomimetics, ROBIO.
IEEE computer society, pp 841–846. isbn: 9781424417582.
https://doi.org/10.1109/ROBIO.2007.4522272

9. Fischetti M, González JJS, Toth P (1997) A branchand-
cut algorithm for the symmetric generalized traveling sales-
man problem. Oper Res 45.3:378–394. issn: 0030364x.
https://doi.org/10.1287/opre.45.3.378

10. Fischetti M, González JJS, Toth P (1995) The symmetric
generalized traveling salesman polytope. Networks 26.2:113–123.
issn: 10970037. https://doi.org/10.1002/net.3230260206

11. Gabrlik P, Lazna T (2018) Simulation of gamma radiation
mapping using an unmanned aerial system. In: IFAC-Papersonline
51.6:256–262. issn: 24058963. https://doi.org/10.1016/j.ifacol.
2018.07.163

12. Gutin G, Karapetyan D (2010) A memetic algorithm for the
generalized traveling salesman problem. Natural Comput 9.1:47–
60. issn: 15677818. https://doi.org/10.1007/s11047-009-9111-6.
arXiv:0804.0722

13. Han J et al (2013) Low-cost multi-UAV technologies
for contour mapping of nuclear radiation field. J Intell
Robot Syst: Theory Appl 70.1-4:401–410. issn: 09210296.
https://doi.org/10.1007/s10846-012-9722-5

14. Helsgaun K (2000) An effective implementation of the Lin-
Kernighan traveling salesman heuristic. Eur J Oper Res 126:106–
130

15. Helsgaun K (2013) GTSP problem libraries BAF, MOM
and GTSP+. http://akira.ruc.dk/∼keld/research/GLKH/. accessed
2020-02-03

16. Helsgaun K (2015) Solving the equality generalized travel-
ing salesman problem using the Lin-Kernighan-Helsgaun Algo-
rithm. Math Programm Comput 7.3:269–287. issn: 18672957.
https://doi.org/10.1007/s12532-015-0080-8

17. Hollinger G, Sukhatme G (2016) Sampling-based motion plan-
ning for robotic information gathering. In: Robotics: Science and
systems. https://doi.org/10.15607/rss.2013.ix.051

18. Hoos HH, Thomas S (2014) On the empirical scaling of
run-time for finding optimal solutions to the travelling sales-
man problem. Eur J Oper Res 238.1:87–94. issn: 03772217.
https://doi.org/10.1016/j.ejor.2014.03.042

19. Isaacs JT, Hespanha JP (2013) Dubins traveling salesman problem
with neighborhoods: A graph-based approach. Algorithms 6.1:84–
99. issn: 19994893. https://doi.org/10.3390/a6010084. http://
www.mdpi.com/1999-4893/6/1/84

20. Kalisiak M, Faigl J (2013) Motion planning maps - dataset.
http://agents.fel.cvut.cz/∼faigl/planning/. accessed 2020-07-07

21. Laporte G, Asef-Vaziri A, Sriskandarajah C (1996) Some
applications of the generalized travelling salesman prob-
lem. J Oper Res Soci 47.12:1461–1467. issn: 14769360.
https://doi.org/10.1057/jors.1996.190

Path planning algorithm ensuring accurate localization of radiation sources 9595

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

33

22. Laporte G, Nobert Y (1983) Generalized traveling salesman
problem through n sets of nodes: an integer programming
approach. INFOR: Inf Syst Oper Res 21.1:61–75. issn: 03155986.
https://doi.org/10.1080/03155986.1983.11731885

23. Lazna T Optimizing the localization of gamma radiation
point sources using a UGV. In: 2018 ELEKTRO Conference
Proceedings. Institute of Electrical and Electronics Engineers Inc.,
pp 1–6. (2018) https://doi.org/10.1109/ELEKTRO.2018.8398368

24. Lazna T, et al. (2018) Cooperation between an unmanned
aerial vehicle and an unmanned ground vehicle in highly
accurate localization of gamma radiation hotspots. Int J
Adv Robot Syst 15.1:172988141775078. issn: 17298814.
https://doi.org/10.1177/1729881417750787

25. Lilienthal A, Loutfi A, Duckett T (2006) Airborne chemical
sensing with mobile robots. Sensors 6.11:1616–1678. issn: 1424-
8220. https://doi.org/10.3390/s6111616

26. Liu Z, Abbaszadeh S, Sullivan CJ (2018) Spatial-temporal
modeling of background radiation using mobile sensor networks.
PLOS one, vol 13. Ed. by Raghuraman Mudumbai. issn,
pp 1932–6203. https://doi.org/10.1371/journal.pone.0205092

27. Miller A., Machrafi R., Mohany A. (2015) Development of a semi-
autonomous directional and spectroscopic radiation detection
mobile platform. Radiat Measur 72:53–59. issn: 13504487.
https://doi.org/10.1016/j.radmeas.2014.11.009

28. Noon CE, Bean JC (1993) An efficient transformation of
the generalized traveling salesman problem. INFOR: Inf Syst
Oper Res 31.1:39–44. issn: 0315-5986. https://doi.org/10.1080/
03155986.1993.11732212

29. Obermeyer KJ, Contributors (2008) VisiLibity: A C++ Library for
Visibility Computations in Planar Polygonal Environments. http://
www.VisiLibity.org. accessed 2020-07-07

30. Pop PC. (2007) New integer programming formulations of
the generalized travelling salesman problem. Amer J Appl
Sci 4.11:932–937. issn: 15543641. https://doi.org/10.3844/ajassp.
2007.932.937

31. de Julio Rozental J (2002) Two decades of radiologi-
cal accidents direct causes, roots causes and consequences.
Braz Arch Biol Technol 45.spe:125–133. issn: 1516-8913.
https://doi.org/10.1590/s1516-89132002000500018

32. Smith SL, Frank I (2017) GLNS An effective large neighborhood
search heuristic for the generalized traveling salesman problem.
Comput Oper Res 87:1–19

33. Soin PK et al (2019) Application of a novel search method
to handheld gamma radiation detectors. IEEE Sens J:1–1. issn:
1530-437X. https://doi.org/10.1109/jsen.2019.2945314

34. Uher J. et al (2007) Directional radiation detector. IEEE
Nuclear Sci Symp Conf Rec 2:1162–1166. isbn: 1424409233.
https://doi.org/10.1109/NSSMIC.2007.4437213

35. Wendorf M (2020) Broken Arrows - The World’s Lost Nuclear
Weapons. shorturl.at/ryBLO

36. Wheatley S, Sovacool BK, Sornette Didier (2016) Reassessing the
safety of nuclear power. Energy Res Social Sci 15:96–100. issn:
22146296. https://doi.org/10.1016/j.erss.2015.12.026

37. Wiedemann T, Shutin D, Lilienthal AJ (2019) Modelbased
gas source localization strategy for a cooperative multi-
robot system— A probabilistic approach and experimen-

tal validation incorporating physical knowledge and model
uncertainties. Robot Auton Syst 118:66–79. issn: 09218890.
https://doi.org/10.1016/j.robot.2019.03.014

38. Woller D (2019) GTSP with arcs - 3 datasets. http://imr.ciirc.cvut.
cz/Datasets/GTSP-arc. accessed 2020-02-03

39. Zakaria AH et al (2017) Development of autonomous radiation
mapping robot. In: Procedia Computer Science. vol 105. Elsevier
B.V., pp 81–86. https://doi.org/10.1016/j.procs.2017.01.203

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

David Woller is a Ph.D.
student at the Czech Insti-
tute of Informatics, Cyber-
netics, and Robotics, Czech
Technical University (CTU)
in Prague. He obtained his
Master’s degree in 2019 in
Cybernetics and Robotics at
CTU in Prague. He spent 3
months at a research intern-
ship at the University of Avi-
gnon, Laboratory of Informat-
ics, France. His main research
interests are route planning
in robotic applications, meta-
heuristics, and local search

techniques in combinatorial optimization.

Miroslav Kulich is an assistant
professor at the Czech Insti-
tute of Informatics, Cyber-
netics, and Robotics, Czech
Technical University (CTU) in
Prague. He received a Ph.D.
degree in Artificial Intelli-
gence and Biocybernetics at
CTU in Prague, and an RNDr.
degree at Charles University in
Prague, Faculty of Mathemat-
ics and Physics. He also spent
6 months at a research fel-
lowship at Helsinki University
of Technology, Automation
Technology Laboratory, Fin-
land. Miroslav Kulich serves
as a reviewer for several

impacted journals as well as a program committee member of rele-
vant international conferences. His research interests include planning
for single and multi-robot systems, especially in exploration and
search&rescue scenarios.

D. Woller and M. Kulich9596

CHAPTER 3. PATH PLANNING ALGORITHM ENSURING ACCURATE
LOCALIZATION OF RADIATION SOURCES

34

Chapter 4

The GRASP Metaheuristic for the Electric
Vehicle Routing Problem

In this chapter, we present the second core publication called The GRASP Metaheuris-
tic for the Electric Vehicle Routing Problem [c2], which was published together with a
co-authored publication [r8]. The research presented was motivated by the Competition
on Electric Vehicle Routing Problem, organized within the 2020 IEEE Congress on Com-
putational Intelligence [27]. Our team (David Woller, Václav Vávra, Viktor Kozák and
Miroslav Kulich) won the competition, and both conference publications present the main
components and preliminary results. The final method implemented the VNS metaheuris-
tic and was described in the publication [r10], which is still under review in the Q2 journal
Operational Research - An International Journal, with the implementation available on-
line [87].

[c2] Woller, D., Kozák, V., Kulich, M., “The GRASP Metaheuristic for the Elec-
tric Vehicle Routing Problem”, English, in Modelling and Simulation for Au-
tonomous Systems, ser. 1, Cham, CH: Springer, 2020. doi: 10.1007/978-3-

030-70740-8_12, 50% contribution, citations: 0 in Web of Science, 1
in Scopus, 4 in Google Scholar.

The Electric Vehicle Routing Problem (EVRP) is a variant of the classical Capac-
itated Vehicle Routing Problem (CVRP), which was formulated only recently. In the
existing literature, the probably most similar problem is the Green Vehicle Routing Prob-
lem (GVRP). The goal of the CVRP is to plan a set of routes for a fleet of vehicles while
satisfying the demand of each customer and respecting the limited capacity of individ-
ual vehicles. In the GVRP, a limited range of vehicles is considered, together with the
option to recharge or refuel at predefined locations. Although the properties of EVRP
were considered separately in the literature, the fundamental formulation proposed in the
competition [27] has not yet been studied.

In this paper, we propose a metaheuristic algorithm for EVRP based on the Greedy
Randomized Adaptive Search Procedure (GRASP) metaheuristic [88], which iteratively
alternates a construction phase and a local search phase. For the local search phase, a lo-
cal search heuristic Variable Neighborhood Descent (VND) [89] is deployed. As the main
contribution, we designed both the construction procedure and problem-specific compo-
nents for the local search phase. The crucial component of the construction procedure
is a custom repair procedure, which guarantees to transform any sequence of customers
into a valid EVRP tour by sequentially fixing battery and load constraints. Multiple
alternative construction and repair procedures are proposed and compared in [r8]. The
proposed local search operators then inspect neighborhoods commonly used in other Ve-
hicle Routing Problems, but are designed to minimize the number of cost evaluations,
since the competition defined the stop condition by a fixed budget of evaluations.

The experimental results in [c2] document the process of tuning the proposed GRASP
method and show that it improved the best-known solution BKS on a majority of previ-
ously solved instances. A detailed comparison of the final VNS method with four other

35

https://doi.org/10.1007/978-3-030-70740-8_12
https://doi.org/10.1007/978-3-030-70740-8_12

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

competing algorithms is available online [27]. Another method, based on the Ant Colony
Optimization (ACO) metaheuristic, was proposed after the competition [39]. The exper-
iments carried out in [87] show, that our VNS method outperforms even the newest ACO
metaheuristic algorithm in a fair experiment.

36

The GRASP Metaheuristic
for the Electric Vehicle Routing Problem

David Woller(B) , Viktor Kozák , and Miroslav Kulich

Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University
in Prague, Jugoslávskách partyzán̊u 1580/3 160 00 Praha 6, Prague, Czech Republic

{wolledav,viktor.kozak,kulich}@cvut.cz,
http://imr.ciirc.cvut.cz

Abstract. The Electric Vehicle Routing Problem (EVRP) is a recently
formulated combination of the Capacitated Vehicle Routing Problem
(CVRP) and the Green Vehicle Routing Problem (GVRP). The goal is
to satisfy all customers’ demands while considering the vehicles’ load
capacity and limited driving range. All vehicles start from one cen-
tral depot and can recharge during operation at multiple charging sta-
tions. The EVRP reflects the recent introduction of electric vehicles
into fleets of delivery companies and represents a general formulation
of numerous more specific VRP variants. This paper presents a newly
proposed approach based on Greedy Randomized Adaptive Search Pro-
cedure (GRASP) scheme addressing the EVRP and documents its perfor-
mance on a recently created dataset.GRASP is a neighborhood-oriented
metaheuristic performing repeated randomized construction of a valid
solution, which is subsequently further improved in a local search phase.
The implemented metaheuristic improves multiple best-known solutions
and sets a benchmark on some previously unsolved instances.

Keywords: Electric vehicle routing problem · Greedy randomized
adaptive search · Combinatorial optimization

1 Introduction

This paper addresses the Electric Vehicle Routing Problem (EVRP) recently for-
mulated in [14]. The EVRP is a challenging NP-hard combinatorial optimization
problem. It can be viewed as a combination of two variants of the classical Vehi-
cle Routing Problem (VRP) - the Capacitated Vehicle Routing Problem (CVRP)
and the Green Vehicle Routing Problem (GVRP). In the VRP, the goal is to
minimize the total distance traveled by a fleet of vehicles/agents, while visiting
each customer exactly once. In the CVRP, the customers are assigned an integer-
valued positive demand, and the vehicles have limited carrying capacity. Thus,
an additional constraint of satisfying all customers’ demands while respecting
the limited vehicle capacity is added to the VRP. Concerning the GVRP, the
terminology is not completely settled, but the common idea among different for-
mulations aims at minimizing the environmental impact, typically by taking into
c© Springer Nature Switzerland AG 2021
J. Mazal et al. (Eds.): MESAS 2020, LNCS 12619, pp. 189–205, 2021.
https://doi.org/10.1007/978-3-030-70740-8_12

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

37

190 D. Woller et al.

consideration the limited driving range of alternative fuel-powered vehicles and
the possibility of refueling at rarely available Alternative Fuel Stations (AFSs).
The EVRP has the same objective as the VRP while incorporating the addi-
tional constraints from CVRP and GVRP. It is sometimes alternatively named
CGVRP, while the name is EVRP often used for other variants of the GVRP
(e.g., with considering the non-linear time characteristic of the recharging pro-
cess or the influence of carried load on the energy consumption).

A method based on the Greedy Randomized Adaptive Search Procedure
(GRASP) metaheuristic, together with the preliminary results, is presented in
the paper. A novel dataset was introduced in [13], and it is the first publicly
available dataset of EVRP instances. A subset of this dataset is used in the
competition [12]. This paper is the first to give results to the whole dataset and
thus represents a valuable benchmark for future researchers. As the competition
results were not known at the time of writing, the results are compared only to
the organizers-provided best-known values for the smallest instances.

1.1 Related Works

Various approaches were successfully applied to the numerous variants of the
VRP, and many of these can also be adapted to the EVRP formulation solved.
For example, a recent survey [5] focused only on the variants of EVRP pre-
sented a total number of 79 papers. Most of these consider additional constraints
intended to reflect real-world conditions, such as using heterogeneous or mixed
vehicle fleet, hybrid vehicles, allowing partial recharging or battery swapping,
considering different charging technologies and the non-linearity of charging
function, dynamic traffic conditions, customer time windows, and others. The
problem formulation introduced in [14] stands out, as it leaves out all but the
most fundamental constraints on battery and load capacity. Thus, addressing it
might produce a universal method adjustable for more specific variants.

According to [5], the most commonly applied metaheuristics are Adaptive
Large Neighborhood Search (ALNS), Genetic Algorithms (GA), Large Neigh-
borhood Search (LNS), Tabu Search (TS), Iterative Local Search (ILS) and
Variable Neighborhood Search (VNS). The GRASP metaheuristic deployed in
this paper is, therefore, not a commonly used one. However, it follows similar
principles as other neighborhood-oriented metaheuristics, such as TS, ILS, or
VNS. Exact methods such as Dynamic Programming or various Branch-and-
Bound/Branch-and-Cut techniques are frequently used as well, but these are
generally not suitable for solving larger instances in a reasonable time.

According to [14], the EVRP variant solved was first formulated in [9]. So far,
only a few papers are dealing with this problem, and for each one of them, the
exact formulation slightly varies. The first one is [18], which additionally limits
the maximum number of routes. It presents a solution method based on the Ant
Colony System (ACS) algorithm. The second one is [15], which considers the
maximum total delivery time. It presents a Simulated Annealing (SA) algorithm
operating with four different local search operators (swap, insert, insert AFS, and
delete AFS). Then, [17] proposes a novel construction method and a memetic

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

38

The GRASP Metaheuristic for the Electric Vehicle Routing Problem 191

algorithm consisting of a local search and an evolutionary algorithm. Similarly
to [15], the local search combines the Variable Neighborhood Search (VNS) with
the Simulated Annealing acceptance criterion. The operators used in the local
search are 2-opt, swap, insert, and inverse. Unlike the previous approaches, the
proposed algorithm is memetic, thus maintains a whole set of solutions. The
organizers of [12] themselves also presented a solution method together with the
new dataset in [13]. Similarly to [18], they employ an Ant Colony Optimization
metaheuristic. However, the problem formulation in [13] differs from [14] and
the previously mentioned methods, as it evaluates the energy consumption as a
function of the current load. Thus, their results are not directly comparable.

2 Methods

2.1 Problem Formulation

The EVRP can be described as follows: given a fleet of EVs, the goal is to find a
route for each EV, such that the following requirements are met. The EVs must
start and end at the central depot and serve a set of customers. The objective
is to minimize the total distance traveled, while each customer is visited exactly
once, for every EV route the total demand of customers does not exceed the
EV’s maximal carrying capacity and the EV’s battery charge level does not fall
below zero at any time. All EVs begin and end at the depot, EVs always leave
the AFS fully charged (or fully charged an loaded, in case of the depot), and the
AFSs (including the depot) can be visited multiple times by any EV. An example
of a solved EVRP instance is shown in Fig. 1. Here, the depot, the AFSs, and
the customers are represented by a red circle, black squares, and blue circles,
respectively. The blue line represents the planned EVRP tour.

The EVRP mathematical formulation as introduced in [14] follows.

min
∑

i∈V,j∈V,i�=j

wijxij , (1)

s.t.
∑

j∈V,i�=j

xij = 1,∀i ∈ I, (2)

∑

j∈V,i�=j

xij ≤ 1,∀i ∈ F ′, (3)

∑

j∈V,i�=j

xij −
∑

j∈V,i�=j

xji = 0,∀i ∈ V, (4)

uj ≤ ui − bixij + C(1 − xij),∀i ∈ V,∀j ∈ V, i �= j, (5)

0 ≤ ui ≤ C,∀i ∈ V, (6)

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

39

192 D. Woller et al.

Fig. 1. Solved EVRP instance

yj ≤ yi − hwijxij + Q(1 − xij),∀i ∈ I,∀j ∈ V, i �= j, (7)

yj ≤ Q − hwijxij ,∀i ∈ F ′ ∪ D,∀j ∈ V, i �= j, (8)

0 ≤ yi ≤ Q,∀i ∈ V, (9)

xij ∈ {0, 1},∀j ∈ V, i �= j, (10)

where V = {D ∪ I ∪F ′} is a set of nodes. Set I denotes the set of customers, set
F ′ denotes set of βi node copies of each AFS i ∈ F (i.e., |F ′| =

∑
i∈F βi) and D

denotes the central depot. Lets also define E = {(i, j)|i, j ∈ V, i �= j} as a set of
edges in the fully connected weighted graph G = (V,E). Then, xij is a binary
decision variable corresponding to usage of the edge from node i ∈ V to node
j ∈ V and wij is the weight of this edge. Variables ui and yi denote, respectively,
the remaining carrying capacity and remaining battery charge flevel of an EV on
its arrival at node i ∈ V . Finally, the constant h denotes the consumption rate
of the EVs, C denotes their maximal carrying capacity, Q the maximal battery
charge level, and bi the demand of each customer i ∈ I.

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

40

The GRASP Metaheuristic for the Electric Vehicle Routing Problem 193

For the purposes of formal components description, let’s also define an EVRP
tour T as a sequence of nodes T = {v0, v1, ..., vn−1}, where vi is a customer, a
depot or an AFS and n is the length of the tour T . Finally, let

w(T) =
n−2∑

i=0

wi,i+1 (11)

be the weight of the whole tour T .

2.2 GRASP Metaheuristic

GRASP is a well-established metaheuristic first introduced in [6] in 1989. Since
then, it was successfully applied to numerous operations research problems, such
as routing, covering and partition, location, minimum Steiner tree, optimization
in graphs, assignment, and scheduling [7]. Its industrial applications include
fields such as manufacturing, transportation, telecommunications, graph and
map drawing, power systems, computational biology, or VLSI.

GRASP is a multi-start metaheuristic suitable for computing near-optimal
solutions of combinatorial optimization problems. It is described in Algorithm1.
At the beginning, the best found tour T ∗ is initialized as empty and its weight
w(T ∗) is set to infinity (lines 1–2). Then, the following process is repeated until
a stop condition is met. A tour T visiting all customers is built from scratch,
using a greedy randomized construction (line 4). If T is not a valid EVRP tour
(e.g. constraints on load or battery capacity are not satisfied), tour T is fixed by
a repair procedure (line 5–6). After that, the tour T is improved by a local search
procedure (line 7), where a local minimum is found. The best tour found overall
T ∗ is then updated, if T yields better weight (line 8–9). In this application, the
stop condition is defined by a maximal number of GRASP iterations MaxIters.

Algorithm 1: Greedy Randomized Adaptive Search (GRASP)
Input: max. number of iterations MaxIters
Output: best tour found T ∗

1 T ∗ ← ∅
2 w(T ∗) ← ∞
3 for i = 1 to MaxIters do
4 T ← greedyRandomizedConstruction()
5 if !isValid(T) then
6 T ← repair(T)

7 T ← localSearch(T)
8 if w(T) < w(T ∗) then
9 T ∗ ← T

10 return T ∗

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

41

194 D. Woller et al.

2.3 Construction

In each iteration of the GRASP metaheuristic, a new valid EVRP tour is to
be constructed. This tour serves as a starting point to the subsequent local
search. According to the GRASP philosophy, a commonly used Nearest Neighbor
(NN) heuristic was utilized for the greedy randomized construction. Due to the
additional constraints imposed by the EVRP formulation, the NN construction
can produce an invalid EVRP tour. Therefore, a repair procedure is needed. A
novel procedure called Separate Sequential Fixing (SSF) was designed for this
purpose.

Nearest Neighbor (NN) Construction. [10] is a commonly used algorithm
to find an approximate solution to the Travelling Salesman Problem (TSP).
The EVRP is equivalent to the TSP if the battery and load constraints are
omitted. As these constraints cannot be easily incorporated into an iterative
construction, it is convenient to determine only the order of the customers with
the NN construction. The construction is described in Algorithm2. The input
to the algorithm is a set of all customers I, the depot D, and a set of edges EID

in the fully connected weighted graph GID = (D ∪ I, EID). Note that the AFSs
F ′ and the corresponding edges are not considered in this phase. The output is
then a TSP tour, which starts and ends at D and visits all customers. At the
very beginning, the depot is added to T (line 1). Then, a first customer to be
visited is randomly selected (line 3). After that, the remaining customers are
greedily added to the tour one by one. Each time, the customer which is closest
to the previously added customer is selected (line 5–8). Finally, the depot is
added again and the tour is closed (line 9).

Algorithm 2: NN construction
Input: graph GID = (D ∪ I, EID)
Output: tour visiting all customers TTSP

1 TTSP .append(D)
2 Mark all customers in I as unvisited
3 Randomly select c ∈ I
4 TTSP .append(c), mark c as visited
5 while all customers not visited do
6 Find the shortest edge from c to an unvisited c′ ∈ I
7 TTSP .append(c

′), mark c′ as visited
8 c ← c′

9 TTSP .append(D)
10 return T

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

42

The GRASP Metaheuristic for the Electric Vehicle Routing Problem 195

Separate Sequential Fixing (SSF) Repair Procedure is a newly proposed
method designed to repair such an EVRP tour, where the constraints on battery
or load capacity are not met. It consists of two phases, in which the constraints
violations are fixed separately. If the following two assumptions are satisfied,
the SSF procedure guarantees to produce a valid EVRP tour. First, the graph
of all AFS and the depot must be connected. Second, each customer must be
reachable from at least one AFS or depot.

The first phase of SSF is described in Algorithm 3. It takes a TSP tour over
all of the customers TTSP as an input and outputs a valid CVRP tour TCV RP .
All nodes are sequentially copied from the TTSP to the TCV RP , and the current
vehicle load CurLoad is held. If the current load is not sufficient for satisfying
the next customer, the depot is added to the TCV RP first.

Algorithm 3: SSF repair procedure - phase 1
Input: tour visiting all customers TTSP

Output: valid CVRP tour TCV RP

1 TCV RP ← ∅
2 TCV RP .append(TTSP .popFront())
3 CurLoad ← MaxLoad
4 for Next in TTSP do
5 if CurLoad ≥ demand(Next) then
6 TCV RP .append(Next)
7 CurLoad ← CurLoad − demand(Next)

8 else
9 TCV RP .append(D)

10 TCV RP .append(Next)
11 CurLoad ← MaxLoad − demand(Next)

12 return TCV RP

The second phase is described in Algorithm 4. It takes a TCV RP as an input
and outputs a valid EVRP tour TEV RP . This time, the nodes are sequentially
copied from the TCV RP to the TEV RP . Initially, the depot is added to the TEV RP

and the current battery level CurBattery is set to maximum (line 2–3). Then,
the following loop is performed for all of the remaining nodes in the TCV RP . The
last node already added to the TEV RP is denoted as Current (line 5). The next
node to be added is denoted as Next, NextBattery is the potential battery level
in the Next node (line 6–9), and NextAFS is the AFS, which is closest to the
Next node (line 10). If the Next node is directly reachable from Current and the
vehicle will not get stuck in it, Next is added to TEV RP (line 11–15). Otherwise,
the CurrentAFS node, which is the closest AFS to Current, is determined
(line 17). Then, a sequence of AFSs from CurrentAFS to NextAFS is added
to TEV RP (line 18). This sequence is obtained as the shortest path on a graph
of all AFSs and a depot. Due to the condition about not getting stuck (line 13)

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

43

196 D. Woller et al.

and the two SSF assumptions, CurrentAFS is always reachable from Current.
After NextAFS, Next can be added as well, and the loop is repeated until the
TCV RP is not empty.

Algorithm 4: SSF repair procedure - phase 2
Input: valid CVRP tour TCV RP

Output: valid EVRP tour TEV RP

1 TEV RP ← ∅
2 TEV RP .append(TCV RP .popFront())
3 CurBattery ← MaxBattery
4 for Next in TCV RP do
5 Current ← TEV RP .back()
6 if isAFS(Next) then
7 NextBattery ← MaxBattery

8 else
9 NextBattery ← CurBattery − getConsumption(Current,Next)

10 NextAFS ← getClosestAFS(Next)
11 Reachable ← CurBattery ≥ getConsumption(Current,Next)
12 Stuck ← NextBattery < getConsumption(Next,NextAFS)
13 if Reachable & !Stuck then
14 TEV RP .append(Next)
15 CurBattery ← NextBattery

16 else
17 CurAFS ← getClosestAFS(Current)
18 TEV RP .append(getPath(CurAFS,NextAFS))
19 TEV RP .append(Next)
20 CurBattery ← MaxBattery − getConsumption(TEV RP .back(), Next)

21 return TEV RP

2.4 Local Search

This section provides a detailed description of the local search that is performed
within the GRASP metaheuristic described in Sect. 2.2. The local search uses
several local search operators, corresponding to different neighborhoods of an
EVRP tour. The application of these operators is controlled by a simple heuristic.
For this purpose, the Variable Neighborhood Descent (VND) and its randomized
variant (RVND) were selected [3].

(Randomized) Variable Neighborhood Descent - (R)VND is a heuris-
tic commonly used as a local search routine in other metaheuristics. It has a
deterministic variant (VND) and a stochastic one (RVND). Both variants are
described in Algorithm 5.

The input is a valid EVRP tour T and a sequence of local search operators
N , corresponding to different neighborhoods in the search space. The output

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

44

The GRASP Metaheuristic for the Electric Vehicle Routing Problem 197

is a potentially improved valid EVRP tour T . Both of the heuristic variants
perform the local search sequentially in the neighborhoods in N . In the case of
the RVND, the sequence of the neighborhoods is randomly shuffled first (line 2),
whereas, in the VND, the order remains fixed. Then, the heuristic attempts to
improve the current tour T in the i-th neighborhood Ni according to the best
improvement scenario (line 4). This corresponds to searching the local optimum
in Ni(T). Each time an improvement is made, the local search is restarted and
T is updated accordingly (line 5–7). The VND then starts again from the first
neighborhood in N , while the RVND randomly reshuffles the neighborhoods first
(line 8). The algorithm terminates when no improvement is achieved in any of
the neighborhoods.

Algorithm 5: (Rand.) Variable Neighborhood Descent - (R)VND
Input: valid EVRP tour T , neighborhoods N
Output: potentially improved valid EVRP tour T

1 i ← 1
2 Randomly shuffle N // RVND only
3 while i ≤ |N | do
4 T ′ ← arg min w(T̃)

T̃∈Ni(T)

5 if w(T ′) < w(T) then
6 T ← T ′

7 i ← 1
8 Randomly shuffle N // RVND only

9 else
10 i ← i + 1
11 return T

Local Search Operators. A description of individual local search operators
corresponding to different neighborhoods follows. Several operators commonly
used in problems, where the solution can be encoded as a permutation (e.g., the
TSP), were adapted for the EVRP. These operators are the 2-opt [4] and 2-string,
which is a generalized version of numerous other commonly used operators.

An essential part of a neighborhood-oriented local search is efficient cost
update computation. As both the 2-string derived operators and the 2-opt take
two input parameters, the time complexity of exploring the whole neighborhood
is O(n2), where n = |V |. A naive approach is to apply every possible combina-
tion of parameters, create a modified tour T̃ , and determine its weight w(T̃) in
order to discover the most improving move. However, evaluating w(T̃) is a O(n)
operation, thus the time complexity of the local search in each neighborhood
would become O(n3). This could be prevented by deriving O(1) cost update
functions δ, which can be expressed as a difference between the sum of removed
edges weights and the sum of newly added edges weights. Thus, a positive value
of the cost update corresponds to an improvement in fitness and vice versa.

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

45

198 D. Woller et al.

As the operators can produce an invalid EVRP tour, each local optimum candi-
date T̃ ∈ Ni(T) is determined and checked for validity before acceptance as T ′.

2-Opt is an operator commonly used in many variants of classical planning
problems such as TSP or VRP. It takes a pair of indices i, j, and a tour T as an
input and returns a modified tour T̃ , where the sequence of nodes from i-th to
j-th index is reversed. It must hold, that i < j, i ≥ 0 and j < n.

The cost update function δ2−opt can be evaluated as

δ2−opt = wi−1,i + wj,j+1 − wi−1,j − wi,j+1, (12)

where the indices are expressed w.r.t. to the tour T .

2-String and Its Variants is a generalized version of several commonly used
operators, which can be obtained by fixing some of the 2-string parameters.
The 2-string operator takes five parameters: a tour T , a pair of indices i, j valid
w.r.t. to T , and a pair of non-negative integers X,Y . It returns a modified tour
T̃ , where the sequence of X nodes following after the i-th node in T is swapped
with the sequence of Y nodes following after the j-th node. It must hold, that
i ≥ 0, j ≥ i + X and j + Y ≤ n − 1. The following operators can be derived by
fixing the values of X and Y :

– 1-point: X = 0, Y = 1
– 2-point: X = 1, Y = 1
– 3-point: X = 1, Y = 2
– or-opt2: X = 0, Y = 2
– or-opt3: X = 0, Y = 3
– or-opt4: X = 0, Y = 4
– or-opt5: X = 0, Y = 5

When performing the local search, the complementary variants of these operators
(e.g., 1-point with X = 1, Y = 0) are considered as well.

The cost update function δ2−string can be evaluated as

δ2−string = cut1 + cut2 + cut3 + cut4 − add1 − add2 − add3 − add4, (13)

where cut1 corresponds to the edge weight after i-th node in T , cut2 to the edge
after i + X, cut3 to the edge after j and cut4 to the edge after j + Y . Then,
add1 is the weight of the edge added after the index i-th node in T , add2 of the
edge added after the reinserted block of Y nodes, add3 of the edge added after j
and add4 of the edge added after the reinserted block of the X nodes. For some
combinations of the parameters, some of these values evaluate to zero, which
must be carefully treated in the implementation. For example, if X �= 0, then
cut2 = wi+X,i+X+1, otherwise cut2 = 0.

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

46

The GRASP Metaheuristic for the Electric Vehicle Routing Problem 199

3 Results and Discussion

This section documents the parameters tuning and evaluates the performance of
the proposed GRASP metaheuristic on the dataset introduced in [13]. Note that
the CGVRP formulation used in [13] slightly differs from the EVRP formulation
used in this paper and [14]. In [13], the energy consumption depends on the
traveled distance and the current vehicle load, whereas in [14], it depends only
on the traveled distance. Thus, the best-known values provided in [13] are not
relevant when using the more general formulation from [14].

The stop condition of the metaheuristic is also adopted from [14]. An individ-
ual run terminates after 25000n fitness evaluations of a tour T , where n = |V | is
the actual problem size, that is, the total number of unique nodes. A single call
to a distance matrix is counted as 1/n of an evaluation. Consistently with [14],
each problem instance is solved 20 times, with random seeds ranging from 1 to
20. The experiments were carried out on a computer with an Intel Core i7-8700
3.20GHz processor and 32 GB RAM.

The rest of this section is structured as follows. Section 3.1 provides detailed
information about the used dataset [13]. The process of tuning GRASP param-
eters on a subset of the dataset is described in Sect. 3.2. The final results of the
tuned metaheuristic on the whole dataset are given in Sect. 3.3.

3.1 Dataset Description

The dataset consists of 4 types of instances, denoted as E, F , M , and X. These
EVRP instances were created from already existing CVRP instances by a pro-
cedure described in [13], which adds a minimum number of charging stations
such that all the customers are reachable from at least one charging station.
The E instances are generated from the CVRP benchmark set from [1], the M
instances from [2], the F instances from [8] and the X instances from [16]. The
E and F instances are small to medium-sized, as they contain between 21 and
134 customers. The M instances are medium-sized (100 to 199 customers), and
the X instances are large (143 to 1000 customers). Only instances X and E
are addressed in [12]. Some parameters used in [12] instances (e.g., energy con-
sumption rate and maximal energy capacity) slightly differ from the values used
in [13]. Here, values from [12] are used when solving the X and E instances.

3.2 Parameters Tuning

The proposed GRASP metaheuristic was implemented in C++ and tuned on the
E and X instances from [12]. Three settings of the local search were addressed:
randomization of the local search (VND or RVND), neighborhood descent strat-
egy (best improvement - BI or first improvement - FI), and selection of the best
performing subset of the operators. The individual setups’ names encode the
parameter settings. For example, setup rvnd BI ls:255 stands for RVND, best
improvement, and operators subset no. 255 (which is 11111111 in binary repre-
sentation and corresponds to using all eight operators). As it was not feasible to

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

47

200 D. Woller et al.

(a) Best performance

(b) Average performance

Fig. 2. Parameters tuning

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

48

The GRASP Metaheuristic for the Electric Vehicle Routing Problem 201

tune all three parameters simultaneously, the process was split into two phases.
First, all 255 possible subsets out the eight operators described in Sect. 2.4 were
tested. In this phase, the remaining two parameters were set to RVND and
BI. Second, all four combinations of the two remaining parameters were tested
simultaneously, while the already selected subset of operators was fixed.

In the first phase, the method rvnd BI ls:195 performed best, as it yielded the
lowest best score most frequently. The operators used in this setup are 2-opt, 1-
point, 2-point, 3-point. Interestingly, no or-opt operator is included. The results
of the second phase are presented in Fig. 2 and in Table 1. Fig. 2a displays the
best performance of the individual setups, Fig. 2b the average performance and
Table 1 provides counts of achieving the lowest (=best) score for each setup. The
results are plotted relative to the best score achieved by the setup rvnd BI ls:195,
which serves as a reference. It turns out that rvnd BI ls:195 is also best in
terms of achieving the lowest best score (9 times out of 17 instances) in the
second phase. However, vnd BI ls:195 is slightly better in terms of achieving the
lowest average score. The first improvement descent strategy is generally rather
unsuccessful. Based on these results, the setup rvnd BI ls:195 is selected as the
final method. As can be seen in Fig. 2, the differences among individual setups
are minor. When averaged across all instances, the worst setup vnd FI ls:195 is
worse by 1% in terms of the best score and only by 0.5% in terms of the average
score than the reference setup.

Table 1. Parameters tuning

GRASP setup Lowest avg - cnt lowest best - cnt

rvnd BI ls:195 4 9

rvnd BI ls:255 3 7

rvnd FI ls:195 2 6

vnd FI ls:195 3 2

vnd BI ls:195 5 2

3.3 Final Results

This section documents the performance of the tuned GRASP metaheuristic on
all the available instances from the dataset [13]. The results on the E instances
are presented in Table 2. The authors of [14] provided fitness values of the best-
known solutions for these instances in [12]. These values are shown in the right-
most column. The implemented GRASP metaheuristic found better solutions
for 5 out of the 7 instances - the improved values are displayed in bold font in
Table 2. The current best-known solution scores are given in the column marked
as BKS. The best score obtained by the GRASP metaheuristic is at most by
1.2% worse than the BKS (instance E-n22-k4). On the other hand, the GRASP
metaheuristic in some cases improved the previous best score by as much as 6%
(instances E-n51-k5 and E-n101-k8).

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

49

202 D. Woller et al.

The results on the X, F and M instances are given in Tables 3, 4 and 5
respectively. As no other solution values were known at the time of writing, the
presented scores are intended as an initial benchmark for future research.

Table 2. GRASP results on competition E instances

instance best mean ± stdev worst tavg(s) BKS prev. best

E-n22-k4 389.32 389.89 ± 0.41 390.19 0.09 384.68 384.68

E-n23-k3 571.95 572.36 ± 0.56 573.13 0.10 571.95 573.13

E-n30-k3 512.19 512.67 ± 0.31 512.88 0.13 511.25 511.25

E-n33-k4 841.08 845.06 ± 1.56 846.83 0.15 841.08 869.89

E-n51-k5 536.09 546.21 ± 5.32 562.32 0.30 536.09 570.17

E-n76-k7 701.63 711.36 ± 5.27 721.21 0.58 701.63 723.36

E-n101-k8 847.47 856.86 ± 6.90 871.10 0.96 847.47 899.88

Table 3. GRASP results on competition X instances

instance best mean ± stdev worst tavg(s)

X-n143-k7 16460.80 16823.00 ± 157.00 17071.90 1.79

X-n214-k11 11575.60 11740.70 ± 80.41 11881.90 4.76

X-n351-k40 27521.20 27775.30 ± 111.99 28019.90 27.26

X-n459-k26 25929.20 26263.30 ± 134.66 26527.40 30.75

X-n573-k30 52584.50 52990.90 ± 246.79 53591.00 52.28

X-n685-k75 72481.60 72792.70 ± 189.53 73206.10 111.70

X-n749-k98 82187.30 82733.40 ± 213.21 83170.40 245.03

X-n819-k171 166500.00 166970.00 ± 211.84 167370.00 492.28

X-n916-k207 345777.00 347269.00 ± 654.93 348764.00 1108.73

X-n1001-k43 77636.20 78111.20 ± 315.31 78914.00 191.70

Table 4. GRASP results on F instances

instance best mean ± stdev worst tavg(s)

F-n49-k4-s4 729.97 731.02 ± 0.88 732.57 0.21

F-n80-k4-s8 247.80 248.00 ± 0.45 249.21 0.49

F-n140-k5-s5 1177.97 1179.61 ± 1.96 1186.70 1.55

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

50

The GRASP Metaheuristic for the Electric Vehicle Routing Problem 203

Table 5. GRASP results on M instances

instance best mean ± stdev worst tavg(s)

M-n110-k10-s9 829.00 829.29 ± 0.41 830.11 1.04

M-n126-k7-s5 1066.00 1068.05 ± 1.40 1070.10 1.36

M-n163-k12-s12 1068.60 1081.42 ± 8.24 1106.36 2.31

M-n212-k16-s12 1359.55 1377.25 ± 9.82 1395.23 4.45

4 Conclusion

This paper addresses the recently formulated Electric Vehicle Routing Problem
and presents the GRASP metaheuristic for finding high-quality solutions in a rea-
sonable time. The performance is tested on the recently proposed dataset [13] of
CGVRP instances, which is also the first one publicly available. For the instances
with best-known solution values, the GRASP metaheuristic proves to be com-
petitive, as it improves the best-known solution for 5 out of 7 instances. The
rest of the instances with no previous solution values is solved as well, and
the results are presented for future reference. The main strength of the imple-
mented GRASP metaheuristic lies in efficient local search, which is sped up by
using constant-time cost update functions. The key component when applying
the GRASP to the EVRP is a newly proposed robust repair procedure called
Separate Sequential Fixing (SSF).

Concerning future work, extracting problem-specific information will be
tested. For example, all of the implemented local search operators do not con-
sider the currently unused AFSs, as they are inspired by methods for TSP-like
problems and explore only some permutation-based neighborhood of the current
solution. Also, the initial NN construction is only distance-based, and meeting
the battery and load constraints is left entirely for the repair procedure. Adopting
informed methods for initial construction, such as those discussed in [11], might
prove beneficial, especially for the larger instances where the quality of the initial
solution is crucial. Besides that, it is important to compare the metaheuristic
with other methods addressing similar problem formulations, such as [18] or [17].
These were tested on a dataset that is not publicly available and was not obtained
at the time of writing.

Acknowledgements. This work has been supported by the European Union’s Hori-
zon 2020 research and innovation program under grant agreement No 688117. The work
of David Woller and Viktor Kozák has also been supported by the Grant Agency of
the Czech Technical University in Prague, grant No. SGS18/206/OHK3/3T/37.

References

1. Christofides, N., Eilon, S.: An algorithm for the vehicle-dispatching problem. J.
Oper. Res. Soc. 20(3), 309–318 (1969). https://doi.org/10.1057/jors.1969.75

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

51

204 D. Woller et al.

2. Christofides, N., Mingozzi, A., Toth, P.: Exact algorithms for the vehicle routing
problem, based on spanning tree and shortest path relaxations. Math. Program.
20(1), 255–282 (1981). https://doi.org/10.1007/BF01589353

3. Duarte, A., Sánchez-Oro, J., Mladenović, N., Todosijević, R.: Variable neighbor-
hood descent. In: Mart́ı, R., Pardalos, P.M., Resende, M.G.C. (eds.) Handbook
of Heuristics, pp. 341–367. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-07124-4 9

4. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the
2-Opt algorithm for the TSP. Algorithmica 68(1), 190–264 (2013). https://doi.
org/10.1007/s00453-013-9801-4

5. Erdelic, T., Carić, T., Lalla-Ruiz, E.: A survey on the electric vehicle routing prob-
lem: variants and solution approaches. J. Adv. Transp. 2019, 48 (2019). https://
doi.org/10.1155/2019/5075671

6. Feo, T.A., Resende, M.G.: A probabilistic heuristic for a computationally difficult
set covering problem. Oper. Res. Lett. 8(2), 67–71 (1989). https://doi.org/10.1016/
0167-6377(89)90002-3

7. Festa, P., Resende, M.G.C.: GRASP. In: Mart́ı, R., Pardalos, P., Resende, M.
(eds.) Handbook of Heuristics. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-07124-4 23

8. Fisher, M.L.: Optimal solution of vehicle routing problems using minimum K-
trees. Oper. Res. 42(4), 626–642 (1994). https://doi.org/10.1287/opre.42.4.626.
https://www.jstor.org/stable/171617

9. Goncalves, F., Cardoso, S., Relvas, S.: Optimization of distribution network using
electric vehicles: A VRP problem. Technical report. University of Lisbon (2011)

10. Gutin, G., Yeo, A., Zverovich, A.: Traveling salesman should not be greedy: Domi-
nation analysis of greedy-type heuristics for the TSP. Discrete Appl. Math. 117(1–
3), 81–86 (2002). https://doi.org/10.1016/S0166-218X(01)00195-0

11. Kozák, V., Woller, D., Kulich, M.: Initial solution constructors for capacitated
green vehicle routing problem. In: Modelling and Simulation for Autonomous Sys-
tems (MESAS) 2020 (2020)

12. Mavrovouniotis, M.: CEC-12 Competition on Electric Vehicle Routing Prob-
lem (2020). https://mavrovouniotis.github.io/EVRPcompetition2020/. Accessed
23 Nov 2020

13. Mavrovouniotis, M., Menelaou, C., Timotheou, S., Ellinas, G.: A benchmark test
suite for the electric capacitated vehicle routing problem. In: 2020 IEEE Congress
on Evolutionary Computation (CEC), pp. 1–8 (2020). https://doi.org/10.1109/
CEC48606.2020.9185753

14. Mavrovouniotis, M., Menelaou, C., Timotheou, S., Panayiotou, C., Ellinas, G.,
Polycarpou, M.: Benchmark Set for the IEEE WCCI-2020 Competition on Evolu-
tionary Computation for the Electric Vehicle Routing Problem. Technical report,
KIOS Research and Innovation Center of Excellence, Department of Electrical
and Computer Engineering, University of Cyprus, Nicosia, Cyprus (2020). https://
mavrovouniotis.github.io/EVRPcompetition2020/TR-EVRP-Competition.pdf

15. Normasari, N.M.E., Yu, V.F., Bachtiyar, C.: Sukoyo: A simulated annealing heuris-
tic for the capacitated green vehicle routing problem. Mathematical Problems in
Engineering 2019 (2019). https://doi.org/10.1155/2019/2358258

16. Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A.: New
benchmark instances for the capacitated vehicle routing problem. Eur. J. Oper.
Res. 257, 845–858 (2016). https://doi.org/10.1016/j.ejor.2016.08.012

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

52

The GRASP Metaheuristic for the Electric Vehicle Routing Problem 205

17. Wang, L., Lu, J.: A memetic algorithm with competition for the capacitated
green vehicle routing problem. IEEE/CAA J. Autom. Sinica 6(2), 516–526 (2019).
https://doi.org/10.1109/JAS.2019.1911405

18. Zhang, S., Gajpal, Y., Appadoo, S.S.: A meta-heuristic for capacitated green vehi-
cle routing problem. Ann. Oper. Res. 269(1–2), 753–771 (2018). https://doi.org/
10.1007/s10479-017-2567-3

CHAPTER 4. THE GRASP METAHEURISTIC FOR THE ELECTRIC VEHICLE
ROUTING PROBLEM

53

Chapter 5

The ALNS metaheuristic for the
transmission maintenance scheduling

The ALNS metaheuristic for the transmission maintenance scheduling [c3] is the third
core publication of this thesis. This work addresses the competition problem of the
ROADEF Challenge 2020 [28], which is a prestigious international competition focused on
novel combinatorial optimization problems with industrial applications. Our team (David
Woller and Jakub Rada) finished tied for 2nd place in the junior category (31 teams) and
8th in the overall ranking (74 teams). The preliminary results and the semifinal method
were also presented in [r9] during the competition, which lasted 18 months.

[c3] Woller, D., Rada, J., Kulich, M., “The ALNS metaheuristic for the transmis-
sion maintenance scheduling”, Journal of Heuristics, vol. 29, no. 2-3, pp. 349–
382, 2023. doi: 10.1007/s10732-023-09514-x, 70% contribution, IF 2.7
(Q2 in Computer Science, Theory & Methods), citations: 1 in Web
of Science, 1 in Scopus, 1 in Google Scholar.

The 2020 problem was proposed by the French high voltage transmission network
operator RTE. The goal was to schedule the interventions needed in the network for regular
maintenance. The problem was complex, considering about 10 real-world properties and
6 types of hard constraints, most of which were time-variable. These include mutual
exclusivity of interventions, different types of limited resources, or non-deterministic risk
factors. The largest instances required scheduling more than 700 interventions over a
year-long time horizon, with one-day granularity, nine types of resources, and more than
800 exclusivity constraints.

We proposed a metaheuristic algorithm based on the ALNS metaheuristic [90], which
we expanded by a local search phase. The main contribution is the design of a large
bank of problem-specific construction and destruction heuristics and several local search
operators. The heuristics represent the crucial component of the ALNS. A total number
of 11 destroy heuristics and 41 repair heuristics were designed based on various problem
properties, including those created by hybridization mechanisms. The final method was
configured and partially designed automatically, using the irace package [91].

The experimental results presented in [c3] provide a detailed evaluation of the algo-
rithm’s performance, which is based on the Best-Known Solutions (BKSs) from the com-
petition. Even on the most challenging data set, the mean gap of the proposed method is
within 2% from the BKS. We also carried out a statistical test that compared all methods
submitted to the final phase. Although the competition used a custom ranking metric, it
turns out that the final ranking would be very similar according to the paired t-test we
used. Furthermore, the contribution of individual components and the adaptive behavior
of ALNS are analyzed in depth.

The competitors who advanced to the final phase were invited to present their work in
the Journal of Heuristics. Thus, some of the related works were published simultaneously
with [c3]. The definition of the problem and the generation of instances are described

54

https://doi.org/10.1007/s10732-023-09514-x

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

in [92]. The winning team proposed a hybrid metaheuristic algorithm that combines
MILP and ILS [41]. The MILP solver was used for finding a feasible initial solution and
a custom ILS metaheuristic algorithm, based on several basic local search neighorhoods
and a single perturbation operator, was used for futher improving the solution. The 2nd

team designed an algorithm based purely on the ILS metaheuristic [42], and the 3rd one
proposed a hybrid algorithm combining GRASP and MILP [49]. This time, the GRASP
was used for quick finding of a good-quality initial solution, and the MILP solver then
ensured solution feasibility and further improved its quality. Some other competitors
published their methods as well. Two of them proposed an approach based on problem
decomposition and solving MILP relaxations: 7th [93] and 11th [94], while one designed
a hybrid algorithm combining VNS and CMA-ES [95]. In summary, metaheuristic algo-
rithms based around efficiently implemented local search tend to outperform more com-
plex methods with stronger theoretical foundations in the competition, presumably due
to their considerably better scalability. Combining them with exact MILP solvers then
ensures solution feasibility. The exact solvers may also be very beneficial for improving
near-optimal solutions or solving smaller subproblems.

55

Journal of Heuristics (2023) 29:349–382
https://doi.org/10.1007/s10732-023-09514-x

The ALNSmetaheuristic for the transmission maintenance
scheduling

David Woller1,2 · Jakub Rada1 ·Miroslav Kulich1

Received: 31 March 2022 / Revised: 10 January 2023 / Accepted: 10 May 2023 /
Published online: 27 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
ROADEF Challenge is an established international competition addressing challeng-
ing industrial problems of combinatorial optimization. It is organized by the French
Operations Research and Decision Support Society (ROADEF) every 2 years since
1999. The most recent ROADEF challenge 2020 was co-organized by the French
electricity transmission network operator, the RTE company. The competition prob-
lem addressed a novel variant of the transmission maintenance scheduling problem,
distinctive in that it has multiple time-dependent properties, constraints, and a risk-
based aggregate objective function. Therefore, the problem is more complex than
the previous formulations, and the existing methods are not directly applicable. This
paper presents a metaheuristic algorithm based on the adaptive large neighborhood
search. The algorithm’s performance is based on a large bank of newly proposed
problem-specific destroy and repair heuristics, an efficient local search engine, and
a penalization mechanism for avoiding invalid solutions. The algorithm is compared
with the best-known solutions from all competition phases and other methods submit-
ted to the final phase. The result shows that themethod yields consistent performance in
all available datasets. The proposed algorithm finished 6th in the semifinal phase of the
competition and 8–9th in the final phase. Finally, the effect of individual components
and the algorithm’s behaviour are analyzed in detail.

B David Woller
wolledav@cvut.cz

Jakub Rada
radajak5@fel.cvut.cz

Miroslav Kulich
kulich@cvut.cz

1 Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague,
Jugoslávských Partyzánů 1580/3, Praha 6 160 00, Czech Republic

2 Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague,
Karlovo Náměstí 13, Praha 2 121 35, Czech Republic

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

56

350 D. Woller et al.

Keywords Adaptive large neighborhood search · Metaheuristics · Combinatorial
optimization · Transmission maintenance scheduling · ROADEF challenge 2020

1 Introduction

The power transmission and distribution industry provide a large number of combina-
torial optimization problems, some of which can be solved by classical graph theory
algorithms (Than Kyi et al. 2019; Borůvka 1926), while others require the design of
specialized algorithms. This paper addresses a novel variant of the TransmissionMain-
tenance Scheduling (TMS) problem. The goal of TMS is to schedule the maintenance
of a high-voltage electricity network, which requires the disconnecting of individual
power lines. These disconnections are called interventions and correspond to the tasks
to be scheduled. The addressed variant is more complex than various existing variants
of TMS (Froger et al. 2016), as it has multiple time-dependent properties, constraints,
and a nonlinear objective function. The objective function to be minimized expresses
the risk-induced cost of a schedule, where the financial risk evaluation is based on
historical data. The addressed TMS variant is proposed by the operator of the French
power network (the largest in Europe), the RTE company.

As the TMS is a challenging problem with direct industrial application, it was
announced as a competition problem in theROADEFChallenge 2020. ROADEFChal-
lenge is an established international competition held every two years since 1999. The
competition’s goal is to identify a previously unsolved real-world industrial problem
andpresent it to the operations research community. The duration of the 2020 challenge
was 16 months, and 74 teams participated. Previous ROADEF challenges addressed
various problems, such as the Glass Sheets Cutting Optimization problem (proposed
by Saint-Gobain Glass France, 2018), the Liquid Oxygen Inventory Routing problem
(Air Liquide, 2016), the Rolling Stock Unit Management at Railway Sites problem
(Société Nationale des Chemins de Fer, 2014), the Machine Reassignment problem
(Google, 2012), or the Large-scale Production Management problem (Électricité de
France, 2010). The successful techniques come from all areas of combinatorial opti-
mization. For example, themethods from thefinal phase in 2014 included customgraph
algorithms, local search, metaheuristics (Tabu Search, Simulated Annealing, Large
Neighborhood Search), as well as Constraint Programming and Integer Programming
techniques (Double Column Generation, Benders Decomposition) (Artigues et al.
2018).

In this paper, a metaheuristic algorithm based on the Adaptive Large Neighborhood
Search (ALNS) metaheuristic (Pisinger and Ropke 2010) is proposed for the TMS.
The basic principle of the algorithm is to repeatedly partially destroy and repair the
current solution, which allows the exploration of various solution neighbourhoods.
In these neighbourhoods, a local search is applied to refine the current solution and
reach a local optimum. A heuristic approachwas selected, as the competition instances
contain up to 1000 interventions and are likely to be computationally intractable for
exact methods. The addressed TMS variant is rich in properties and constraints, and
thus,methods for other variants could not be easily reapplied. TheALNSmetaheuristic

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

57

The ALNS metaheuristic for the transmission maintenance… 351

in particular was selected because a large number of destroy and repair heuristics can
be designed, each mimicking a different partial property of the problem.

The initial version of the proposed algorithm was described in Woller and Kulich
(2021), with experimental results on the qualification and semifinal dataset. The qual-
ification version consisted of the standard ALNS metaheuristic adapted for the TMS
problem, extended by a local search phase. An augmented objective function was
formulated to handle both soft and hard constraint violations, and a bank of problem-
specific destroy and repair heuristics was newly proposed, together with a set of local
search operators.

This paper describes the algorithm submitted to the final phase of the challenge.
Several extensions are newly introduced in this paper, together with an exhaustive
experimental evaluation on all four competition datasets. The following contributions
are newly proposed in this paper, as they were not implemented in the qualification
method.

• The proposed repair heuristics are systematically hybridized. Hybridization adds
randomness to otherwise deterministic intervention selection and start time selec-
tion and enables to further diversify the search process.

• The evaluation of some repair heuristics is sped by estimates based on precom-
puting intervention static properties, such as average resource demand, cost, and
length.

• An automated algorithm design and tuning setup is presented. In the latter stages
of the competition, both the structure of the algorithm and the parameters were
determined by Iterated Racing for Automatic Algorithm Configuration (López-
Ibáñez et al. 2016).

The presented method yields consistent performance on all 4 competition datasets.
The method finished 6th in the semifinal phase of the competition (1st in the Junior
category) and 8–9th in the final phase (2nd–3rd in the Junior category).

The rest of the paper is structured as follows. Section2 details the related works.
Section3 provides a formal description of the Transmission Maintenance Schedul-
ing problem. The method submitted to the final competition phase is described in
Sect. 4. The experimental results are presented and discussed in Sects. 5, and6 gives
the conclusions.

2 Related works

The ROADEF Challenge 2020 addresses a variant of the Transmission Maintenance
Scheduling (TMS) problem. The goal of TMS is to schedule interventions in a
transmission network to perform the necessary maintenance. The existing literature
distinguishes between long-term TMS and short-term TMS (Shahidehpour and Mar-
wali 2000). In the case of long-term TMS, the time horizon is typically a year, the
granularity is days or even weeks, and the maintenance to be scheduled is preventive.
The competition problem falls into this category. As for short-term TMS, the time
horizon ranges in days or weeks, the granularity of the schedule can be an hour or less,
and maintenance is typically preplanned and reactively rescheduled depending on the

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

58

352 D. Woller et al.

current state of the network. An example of a short-term TMS variant can be found in
Lv et al. (2015).

A closely related problem to TMS is the Generator Maintenance Scheduling prob-
lem (GMS). The goal of the GMS is to schedule the shutdown of power generation
units rather than disconnecting power lines, but otherwise, the GMS has objectives
and constraints similar to the TMS (Froger et al. 2016). These two problems are often
addressed simultaneously (Wang et al. 2016).

A wide range of TMS problems was proposed in the literature, but the formulation
used in the ROADEF Challenge 2020 competition problem does not seem to fit any
variant previously addressed. In existing TMS variants, the structure of the network
is often modelled by a transportation model (Abirami et al. 2014) or a DC power flow
model (Da Silva et al. 2000). The competition problem does not employ an explicit
networkmodel. The TMS objective function can be reliability-based (Schlünz andVan
Vuuren 2013), cost-based (El-Sharkh 2014) or a combination of both objectives (Moro
and Ramos 1999). The competition problem uses the last variant, as its objective
function is a nonlinear aggregation of risk-induced cost values. There can be numerous
constraints related to different attributes of the TMS. Interventions can have restricted
time windows and be subject to precedence or concurrency constraints. Maintenance
can be limited by the availability of workforce or resources. To ensure incident-free
network operation, there may also be constraints on the maximum capacity of the
transmission lines or the minimum customer demand (Froger et al. 2016). From these,
the competition problem considers time windows, mutual exclusivity of interventions,
and limited workforce. TMS problems often need to reflect uncertainty, which can
be caused by unpredictable fluctuations in supply and demand or extreme weather
conditions. This uncertainty can be modelled by the loss of load probability (Reihani
et al. 2012) or the expected energy not served (Lu et al. 2012). The competition problem
does not utilize an explicit model. Instead, uncertainty is implicitly incorporated into
the input data, which contain risk-based costs for each possible start time of every
intervention and all relevant crisis scenarios. Finally, most constraints and problem
properties are time-dependent, which is not common in existing formulations.

Due to the intractability of theTMS, there has been a cumulative effort of researchers
to develop both specialized exact methods and heuristic methods. TMS variants are
often formulated as a Mixed Integer Programming problem and addressed with a
commercial solver, although this approach is reported to be feasible only for small
instances (Mollahassani-Pour et al. 2014). Its scalability can be improved using the
Benders decomposition (Geetha and Swarup 2009), as many TMS variants possess the
necessaryblock structure. Somecustomproblem-specific exactmethodswere alsopro-
posed, such as a dynamic programming approach (Huang 1997) or the branch-and-cut
technique (Pandžić et al. 2012). Various metaheuristic algorithms were successfully
applied to approximately solve large instances. According to Froger et al. (2016),
the most commonly adapted metaheuristics are population-based, such as Genetic
Algorithm (Volkanovski et al. 2008) or Particle Swarm optimization (Suresh and
Kumarappan 2013). Metaheuristics based on local search are also applied, for exam-
ple, SimulatedAnnealing (Saraiva et al. 2011) or Tabu Search (Burke and Smith 2000).
Some authors combine exact and heuristic methods in a hybrid solver, e.g. Genetic
Algorithm and Mixed Integer Programming (Feng et al. 2009) or Non-Dominated

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

59

The ALNS metaheuristic for the transmission maintenance… 353

Sorting Genetic Algorithm III with a custom Dual Simplex method (Salinas San Mar-
tin et al. 2022).

The Adaptive Large Neighborhood Search (ALNS) metaheuristic was first applied
to the Pickup and Delivery Problem with Time Windows (Ropke and Pisinger 2006)
and it is an extension of the Large Neighborhood Search (LNS) metaheuristic (Shaw
1998). LNS introduced the concept of large neighbourhoods, defined by pairs of
destroy and repair heuristics, as a counterpart to small neighbourhoods typically used
in local search operators. The ALNS then added a learning mechanism that adjusts
the use of individual heuristics according to their previous performance, thus adapt-
ing the method to the currently solved instance. The main strength of the LNS is
providing a robust diversification mechanism that prevents premature convergence,
whereas the ALNS is suitable for managing large banks of available heuristics or
addressing highly heterogeneous datasets. The ALNS was previously applied to a
related problem focused on Maintenance Scheduling for Offshore Oil and Gas Plat-
forms (Khalid et al. 2021). Regarding scheduling problems in general, the existing
literature documents many successful applications, such as Service Technician Rout-
ing and Scheduling (Kovacs et al. 2012), Multiple Agile Satellites Scheduling (He
et al. 2018), Electric Vehicle Scheduling (Wen et al. 2016) or Distributed Reentrant
Permutation Flow Shop Scheduling (Rifai et al. 2016). These problems have multi-
ple properties that can be exploited by problem-specific destroy and repair heuristics,
which is true for the addressed TMS problem as well. The hybridization mechanisms
used in this paper to further expand the portfolio of heuristics and adding a local search
phase to the standard ALNS are inspired by Smith and Imeson (2017), which proposed
a state of the art ALNS-based algorithm for the Generalized Traveling Salesman Prob-
lem. Finally, the proposed method obtains valid solutions using a static penalization
of constraint violations with tunable weights, frequently used in Evolutionary Opti-
mization (Back et al. 1997). More robust alternatives to this approach are dynamic
penalization (Joines et al. 1994) or adaptive penalization (BenHamida and Schoenauer
2000). To the best of our knowledge, the ALNS is applied to TMS for the first time in
this paper, respectively, in the preceding conference paper (Woller and Kulich 2021).

3 Problem definition

This section formally defines the TMS problem addressed in the ROADEF Challenge
2020. It is structured as follows. The necessary notation is defined in Sect. 3.1. The
problem constraints are described in Sect. 3.2 and the objective function is provided
in Sect. 3.3. More details about the problem can be found in Ruiz et al. (2020).

3.1 Notations

This section defines the notation necessary for the formal definition of the problem and
the exact description of the proposed method. The notation is adapted from Ruiz et al.
(2020) and slightly expanded. As mentioned in Sect. 2, the TMS variant addressed

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

60

354 D. Woller et al.

employs an explicit model of the transmission network. Therefore, the formulation is
more similar to a highly constrained scheduling problem.

Planning horizon is finite and discrete. Let T ∈ N denote the number of time steps
in an instance. The discrete-time horizon is defined as H = {1, .., T }. The value of T
determines the granularity of the instance; for example, T = 53 corresponds to weeks
and T = 365 to days.

Interventions correspond to the disconnections of individual power lines from the
network and represent the tasks to be scheduled. Let I be the set of all interventions
and i ∈ I a single intervention. Then �i,t ∈ N is the duration of an intervention i ,
given that it started at time t .

Exclusions describe the mutual exclusivity of some interventions. Let Exc be the
set of all exclusions. An exclusion is a triplet (i1, i2, t) ∈ Exc, where i1, i2 are two
interventions that cannot be scheduled simultaneously at time t ∈ H .

Resources, such asworkforce or equipment, are needed to carry out an intervention.
Let C be the set of all resources. The demand for the resource c ∈ C at time t ∈ H
by an intervention i ∈ I , which started at time t ′, is given by rc,ti,t ′ ∈ R. Each resource
c ∈ C has a lower usage bound lct ∈ R and an upper usage bound utc ∈ R for each
time t ∈ H .

Scenarios are external factors, such as seasonal weather conditions, that can disrupt
power delivery and cause financial losses to the network operator. Each time t ∈ H is
assigned a set of possible scenarios St .

Risk expresses the possible financial loss due to the scheduling of an intervention
i ∈ I to begin at time t ′ ∈ H . The risk value at time t ∈ H is then expressed as
risks,ti,t ′ ∈ R, where s ∈ St is an imminent scenario. The risk values are based on
historical data collected by the network operator.

Solution of the TMS problem is a list x of pairs (i, t ′) ∈ I × H , where t ′ is the
scheduled start time of an intervention i . Finally, let It be the set of interventions
ongoing at time t ∈ H and let Ix be the set of interventions scheduled in a solution x .
An example of a valid solution is shown in Fig. 1.

3.2 Constraints

Any solution x must meet the following constraints to represent a valid schedule.
Non-preemptive scheduling: an intervention must proceed without interruption

once it has started. If an intervention i ∈ I starts at time t ∈ H , it must end at time
t + �i,t .

Everything scheduled on time: all interventions must end within the planning
horizon. It must hold that t + �i,t ≤ T + 1,∀i ∈ I .

Resource constraints: the total workload of each resource c ∈ C at time t ∈ H
must be within its lower and upper bounds. The total workload of resource c at time t
is given by

rc,t =
∑

i∈It
r c,ti,t ′ .

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

61

The ALNS metaheuristic for the transmission maintenance… 355

Fi
g.
1

So
lv
ed

in
st
an
ce

C
01

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

62

356 D. Woller et al.

It must hold that lct ≤ rc,t ≤ uct ,∀c ∈ C, t ∈ H .
Exclusivity constraints: all the exclusions (i1, i2, t) ∈ Exc has to be respected at

all times. It must hold that i1 ∈ It �⇒ i2 /∈ It ,∀(i1, i2, t) ∈ Exc.

3.3 Objective

The objective value obj of a schedule is defined as a weighted aggregation of two
values: mean cost obj1 and expected excess obj2.

Mean cost evaluates the total planning risk averaged for all scenarios and time
steps. The cumulative planning risk at t ∈ H for a scenario s ∈ St is defined as

risks,t =
∑

i∈It
r isks,ti,t ′ ,

where t ′ is the start time of the intervention i . The mean cumulative planning risk at
t ∈ H is then defined as

riskt = 1

|St |
∑

s∈St
r isks,t .

Finally, the mean cost is defined as

obj1 = 1

T

∑

t∈H
riskt .

Expected excess is intended to suppress extreme cost variability in different sce-
narios. The expected excess at time t ∈ H is defined as

Excessτ (t) = max(0, Qt
τ − riskt).

Here, Qt
τ is the τ quantile of cumulative planning risks of all scenarios s ∈ St at

time t ∈ H , defined as

Qt
τ = Qτ ({risks,t }s∈St),

. The value of τ is part of a TMS problem instance. The expected excess of the whole
schedule is then defined as

obj2 = 1

T

∑

t∈H
Excessτ (t).

Final objective obj is given by

obj = α × obj1 + (1 − α) × obj2,

where α ∈ [0, 1] is a provided scaling factor.

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

63

The ALNS metaheuristic for the transmission maintenance… 357

4 ALNSmetaheuristic for the TMS problem

This section describes the algorithm proposed for the final phase of the challenge. The
high-level ALNS metaheuristic is described in Sect. 4.1. Section4.2 introduces the
augmented objective function used to penalize invalid solutions. The key element of
the ALNS is a bank of destroy and repair heuristics, designed specifically for the TMS
problem. These are described in Sect. 4.3. Hybridization, which systematically adds
randomness to the proposed repair heuristics, is introduced in Sect. 4.4. Section4.5
then presents an approach to reducing the time requirements of some repair heuristics.
Finally, the local search is described in Sect. 4.6.

4.1 Overall solution approach

The Adaptive Large Neighborhood Search metaheuristic, first introduced in Ropke
and Pisinger (2006), is based on repeated partial destruction and reconstruction of a
current solution. For this purpose, a large bankof heuristics for destroying and repairing
was proposed specifically for the TMS problem. The usage of individual heuristics
is adaptive, meaning that their selection weights in each iteration are adjusted on the
basis of their previous performance. In addition, a local search phase was added to the
standard ALNS, together with newly proposed local search operators. Local search
enables efficient refinement of a current solution and reaching local optima.

Algorithm 1 ALNS metaheuristic
1: i ← 0, x∗ ← ∅
2: while !stop() do
3: if i = 0 then
4: x ′ ← construction()

5: ρ−, ρ+ ← (1, ..., 1)
6: x ← x ′
7: Nr ← U(0,DEPTH ∗ size(x))
8: select d,r according to ρ− and ρ+
9: x ← r(d(x, Nr), Nr)

10: x ← local_search(x)
11: if c(x) < c(x ′) then
12: i ← 0, x ′ ← x
13: else
14: i ← i + 1
15: if c(x) < c(x∗) then
16: x∗ ← x

update ρ−(d) and ρ+(r)

17: if i = imax then
18: i ← 0
19: return x ′

The resulting extended variant of the ALNS is described in Algorithm 1. Here,
the variables x, x ′, x∗ represent the current, current best and overall best solution,
respectively. The counter i controls the restarting of the main ALNS loop and resets
after imax = ITERS_MAX not improving iterations. Each restart begins with creating

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

64

358 D. Woller et al.

a new solution x ′ and resetting the selection weights ρ−, ρ+ of destroy and repair
heuristics, respectively (lines 3–5). Each iteration performs the following process.
The rate of destruction Nr of a solution x is randomly sampled uniformly from the
interval (0,DEPTH ∗ size(x)) (line 7). Then, the destroy heuristic d and the repair
heuristic r are selected according to the selection weights ρ−, ρ+, using a roulette
wheel selection mechanism (line 8). After that, Nr interventions are removed from
x using d and reinserted using r and subsequently x is subjected to a local search
(lines 9–10). Finally, the acceptance and restart criteria are checked and the selection
weights are updated (lines 11–18). The main ALNS loop is controlled by an arbitrary
stop condition (line 2), which was given by a fixed computation time according to the
rules of the challenge. Alternatively, a maximum number of fitness evaluations or the
number of iterations could be used.

The mechanism of updating the selection weights of the individual heuristics is
intended to reflect their previous performance and is adapted from Pisinger and Ropke
(2010). The weight ρ−(d) of a destroy heuristic d is updated using the following
formula:

ρ−(d) = λρ−(d) + (1 − λ)ω,

where

ω =

⎧
⎪⎨

⎪⎩

�1, if new overall best solution x∗ was found,

�2, if new current best solution x ′ was found,
�3, otherwise.

It must hold that �1 ≥ �2 ≥ �3 ≥ 0. Then λ ∈ [0, 1] is a decay parameter.
Regarding the remaining solver parameters, ITERS_MAX ∈ N and DEPTH ∈ [0, 1].
The values ofDEPTH,ITERS_MAX, λ,�1,�2, and�3 are all fixed solver parameters.
Their tuning is described in Sect. 5.3.

4.2 Augmented objective function

The addressed variant of the TMS problem considers four kinds of constraints,
described in Sect. 3.2. The scheduling problem is non-preemptive and limited by a
finite planning horizon, both of which requirements are easy to satisfy and incorpo-
rate into the implementation. However, the resource and exclusivity constraints are
variable in time and thus significantly harder to meet. No polynomial-time construc-
tive or repair procedure is known. Therefore, the proposed algorithm also considers
invalid solutions during the search process and treats the latter two constraints as
soft constraints. The invalidity rate is penalized and combined with the actual objec-
tive function of the TMS problem obj in the so-called augmented objective function
objaug . This mechanism is inspired by Michel and Hentenryck (2018).

Individual measures of violating the resource and disjunctive constraints are
defined as follows. The excessive usage of the resource c at time t is given by
rc,tover = max(rc,t − uct , 0) and the insufficient usage by rc,tunder = max(lct − rc,t , 0).

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

65

The ALNS metaheuristic for the transmission maintenance… 359

Then, the total resource usage of all resources beyond their bounds can be defined as

runder =
∑

c∈C

∑

t∈H
rc,tunder ,

rover =
∑

c∈C

∑

t∈H
rc,tover .

As for the exclusivity constraints, the penalty can be defined as

epen =
∑

(i1,i2,t)∈Exc
both_scheduled(i1, i2, t),

where both_scheduled(i1, i2, t) = 1 if i1, i2 ∈ It , and 0 otherwise. Finally, the
augmented objective function objaug can be defined as a weighted aggregation of obj
and the introduced penalties:

objaug = obj + β1 ∗ runder + β2 ∗ rover + γ ∗ epen .

The values of β1, β2, γ ∈ [10, 000, 100, 000] are tunable parameters. Their ranges
are empirically set so that all valid solutions have values of objaug lower than those
of the invalid ones.

4.3 Destroy and repair heuristics

The basic principle of ALNS is to repeatedly ruin and recreate part of a current
solution x . In each iteration, Nr interventions are removed by applying a randomly
selected destroy heuristic (d) Nr times (Algorithm 1, line 9). Then, these interven-
tions are scheduled again, using a repair heuristic r. The triplet (d,r, Nr) defines the
“large neighborhood ” in the ALNSmetaheuristic. Various destroy heuristics designed
specifically for the TMS problem are introduced in Sect. 4.3.1 and repair heuristics in
Sect. 4.3.2. Section4.4 describes two hybridization mechanisms that allow a further
generalization of the proposed repair heuristics. Finally, an approach to reduce the
computational complexity of repair heuristics is presented in Sect. 4.5.

4.3.1 Destroy heuristics

All destroy heuristics operate as follows. Let x be a current solution and Ix be the
set of interventions currently scheduled in x . A destroy heuristic selects a single
intervention i ∈ Ix and removes the pair (i, t) from x . Intervention i can be randomly
selected according to some of its individual properties (length, number of exclusions)
or according to its influence on some properties of the current schedule (decrease in
cost, decrease in resource demand). The resulting partial solution is marked as x\i .
Regarding complexity, most of the destroy heuristics areO(|I |). The proposed destroy
heuristics are formally defined in Table 1.

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

66

360 D. Woller et al.

Table 1 Destroy heuristics

Heuristic Intervention selection rule

Random (RND) i = rand()
i∈Ix

Cheapest (CH) i = arg min
i∈Ix

(objaug(x) − objaug(x\i))
Most expensive (ME) i = argmax

i∈Ix
(objaug(x) − objaug(x\i))

Lowest resource demand (LRD) i = arg min
i∈Ix

(rtotal (x) − rtotal (x\i))
Highest resource demand (HRD) i = argmax

i∈Ix
(rtotal (x) − rtotal (x\i))

Shortest (SH) i = arg min
i∈Ix

�i,t ′

Longest (LN) i = argmax
i∈Ix

�i,t ′

Least exclusions (LEX) i = arg min
i∈Ix

|Exci |
Most exclusions (MEX) i = argmax

i∈Ix
|Exci |

Least used (LU) i = arg min
i∈Ix

removedi

Most used (MU) i = argmax
i∈Ix

removedi

Here, t ′ is the start time currently scheduled for i ∈ Ix , Exci ⊂ Exc is a set of
exclusions involving i , removedi is a counter incremented at each removal of i , and
rtotal is the total resource usage of a current solution, defined as

rtotal =
∑

c∈C

∑

t∈H
rc,t .

For example, the HRD destroy heuristic removes the intervention i , which is the most
resource-intensive in a current solution x .

4.3.2 Repair heuristics

All repair heuristics perform the following operation. A single unscheduled interven-
tion i ∈ I\Ix is selected and its new start time t ′ is determined. The pair (i, t ′) is
then added to a partial solution x , which is marked as x ∪ (i, t ′). The complexity
of most repair heuristics is O(|I | × |H |) due to the need to determine the start time
t ′ ∈ H . As most of the properties of the intervention are time-dependent, the start
time t ′ influences the duration of the intervention, the total cost and the demand for
resources of x ∪ (i, t ′). Therefore, four different start time selection mechanisms are
proposed in Table 2.

Individual repair heuristics are formally defined in Table 3. Most heuristics employ
the cheapest start time t ′i,cheap, including those based on a time-independent property
(RND, LEX, MEX, LU, MU). Only the LRD2, SH2 and LN2 heuristics employ an
alternative start time selection mechanism consistent with their intervention selection

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

67

The ALNS metaheuristic for the transmission maintenance… 361

Table 2 Start time selection mechanisms

Mechanism Start time selection rule

Cheapest t ′i,cheap = arg min
t∈H(objaug(x ∪ (i, t)) − objaug(x))

Lowest resource demand t ′i,lrd = arg min
t∈H(rtotal (x ∪ (i, t)) − rtotal (x))

Shortest t ′i,short = arg min
t∈H �i,t

Longest t ′i,long = argmax
t∈H �i,t

Table 3 Repair heuristics

Heuristic Intervention selection rule

Random (RND) i = rand()
i∈I\Ix

Cheapest (CH) i = arg min
i∈I\Ix

(objaug(x ∪ (i, t ′i,cheap)) − objaug(x))

Most expensive (ME) i = arg max
i∈I\Ix

(objaug(x ∪ (i, t ′i,cheap)) − objaug(x))

Lowest res. demand 1 (LRD1) i = arg min
i∈I\Ix

(rtotal (x ∪ (i, t ′i,cheap)) − rtotal (x))

Lowest res. demand 2 (LRD2) i = arg min
i∈I\Ix

(rtotal (x ∪ (i, t ′i,lrd)) − rtotal (x))

Highest resource demand (HRD) i = arg max
i∈I\Ix

(rtotal (x ∪ (i, t ′i,cheap)) − rtotal (x))

Shortest 1 (SH1) i = arg min
i∈I\Ix

�i,t ′i,cheap
Shortest 2 (SH2) i = arg min

i∈I\Ix
�i,t ′i,short

Longest 1 (LN1) i = arg max
i∈I\Ix

�i,t ′i,cheap
Longest 2 (LN2) i = arg max

i∈I\Ix
�i,t ′i,long

Least exclusions (LEX) i = arg min
i∈I\Ix

|Exci |
Most exclusions (MEX) i = arg max

i∈I\Ix
|Exci |

Least used (LU) i = arg min
i∈I\Ix

removedi

Most used (MU) i = arg max
i∈I\Ix

removedi

rule. For example, the LRD2 repair heuristic schedules the intervention i to t ′i,lrd ,
which causes the lowest increase in total resource demand, regardless of increase in
objaug .

All repair heuristics can also be used as an initial solution construction procedure
by simply calling the heuristic |I | times, starting with an empty solution x . This is used
in each restart of the ALNS metaheuristic (line 4, Algorithm 1). The repair heuristic
selected to serve as a construction procedure is the longest 1 (LN1) heuristic. The
tuning process that results in this choice is described in Sect. 5.3.

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

68

362 D. Woller et al.

4.4 Hybridization of repair heuristics

The repair heuristics introduced so far are all deterministic, with the only exception
of the trivial RND repair heuristic. The same holds for the start time selection mecha-
nisms. Therefore, applying the same repair heuristic to the same partial solution will,
in most cases, produce the same complete solution, which may cause stagnation of
the ALNS search process. To prevent this, the selection of the intervention and the
selection of the start time is further randomized through the following mechanisms,
adopted from Smith and Imeson (2017).

4.4.1 Randomization of start time selection

When selecting an intervention i ∈ I\Ix to schedule, most repair heuristics consider
the insertion costs at the cheapest start time t ′i,cheap, defined in Table 2. The start time
selection mechanism can be easily randomized by adding noise to the insertion cost
using the following formula:

t ′i,cheap = argmin
t∈H ((1 + rand)(obj ′aug)),

where obj ′aug = objaug(x ∪ (i, t)) − objaug(x) is the insertion cost of scheduling
an intervention i at time t in a partial solution x , rand is a number generated uni-
formly randomly from [0, η] each time the insertion cost is evaluated, and η is a solver
parameter. If η = 0, the described start time selection mechanism becomes deter-
ministic. Otherwise, η = H , where H ∈ (0, 0.5] is a tunable solver parameter. The
three remaining start time selection mechanisms could be randomized analogically.
However, each is used only in a single repair heuristic; thus, their randomization was
omitted.

4.4.2 Randomization of intervention selection

The selection of interventions in some repair heuristics is randomized similarly to
the start time. Instead of always selecting an intervention i ∈ I\Ix that minimizes
or maximizes a certain property (e.g., minimizes resource demand in the case of the
LRD1 heuristic), the following mechanism is used. All interventions from I\Ix are
sorted according to the property currently considered (e.g., lowest resource demand
to the highest resource demand for LRD1). Then, an index k ∈ {1, 2..., l} is randomly
selected according to the unnormalized probability mass function [μ0, μ1, ...μl−1],
where l = |I\Ix | and μ is a solver parameter. After that, the intervention with the
k − th lowest value of the currently considered property is selected.

Thevalue ofμdetermines the behaviour of the repair heuristic, as it controlswhether
an intervention with the smallest or largest possible property value is most likely to
be selected. If μ = 0, the selection process is deterministic, and the intervention with
the lowest property value is always selected. When μ ∈ (0, 1), the selection strongly
favours the few interventions with the lowest property values. The μ = 1 corresponds

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

69

The ALNS metaheuristic for the transmission maintenance… 363

Table 4 Hybridized repair heuristics

η = 0 η = H

μ = 0 CH, LRD1, SH1, LEX, LU, ME,
HRD, LM1, MEX, MU

H1-RND, H1-CH, H1-LRD1, H1-SH1,
H1-LEX, H1-LU, H1-ME, H1-HRD,
H1-LM1, H1-MEX, H1-MU

μ = M1 H2-CH, H2-LRD1, H2-SH1,
H2-LEX, H2-LU

H3-CH, H3-LRD1, H3-SH1, H3-LEX,
H3-LU

μ = M2 H2-ME, H2-HRD, H2-LN1,
H2-MEX, H2-MU

H3-ME, H3-HRD, H3-LN1, H3-MEX,
H3-MU

to a uniform random selection. Finally, μ > 1 favours interventions with the highest
property values.

In the solver, two separate values of μ are used to parameterize some of the repair
heuristics: M1 ∈ (0, 1) and M2 > 1 for the selection of interventions with some
minimal, respectively, maximal properties. The value M1 is used in the heuristics
intended to assign a high selection probability to interventions with low property
values (e.g., LRD1), while M2 is used in the heuristics that assign a high selection
probability to interventions with high property values (e.g., HRD).

4.4.3 Introduced hybrid heuristics

Two previously described mechanisms were combined to create a large bank of ran-
domized repair heuristics. In addition to the deterministic heuristics described in
Sect. 4.3.2, the following randomized hybrid variants were added.

The first set of hybrid heuristics uses only the randomized start time selectionmech-
anism, determined by the parameter η = H . The intervention selection mechanism
remains deterministic, therefore μ = 0. These heuristics are marked with the H1
prefix. The second set uses only the randomization of the intervention selection, deter-
mined by the parameter M1 or M2. These heuristics are marked with the H2 prefix.
The third set, marked with the H3 prefix, uses both randomization mechanisms at the
same time. Note that M1 is used to hybridize the minimizing heuristics (CH, LRD1,
SH1, LEX, LU) and M2 the maximizing (ME, HRD, LM1, MEX, MU). The tuning
of the actual values of the parameters H , M1, and M2 is described in Sect. 5.3. All
introduced heuristics, including the original deterministic variants, are classified in
Table 4.

4.5 Repair heuristics speed up

Some repair heuristics select an intervention to schedule based on some time-
independent properties of the intervention, such as the number of exclusions (LEX,
MEX, and their variants), their previous usage (LU, MU, and their variants), or
completely randomly (RND). Most heuristics, however, evaluate some intervention
property at all possible intervention start times and select the best start time possible.
This was introduced in Sect. 4.3.2 as start time selection mechanisms. As the best

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

70

364 D. Woller et al.

possible start time must be determined for each unscheduled intervention in i ∈ I\Ix ,
these heuristics have a higher time complexity than those based on time-independent
properties.

The properties considered (length, cost, or resource demand) tend to be relatively
similar across all possible start times: a very long intervention will probably be more
expensive than a very short one, regardless of their start times. Using this assumption,
the set of currently unscheduled interventions I\Ix considered by a repair heuristic is
reduced before applying the heuristic. For this purpose, the average resource demand,
cost, and length are precomputed for all interventions. Then, the repair heuristics
consider only a candidate subset of fixed size Ic ⊂ I\Ix , where |Ic| = lc. The
interventions in Ic are preselected according to their average values of the property
currently considered (e.g., Ic for the CH heuristic contains only lc interventions from
I\Ix with the lowest average cost, while Ic for the HRD heuristic contains only lc
interventions with the highest resource demand).

The value of lc is defined as

lc = min(batch_si ze ∗ |I |, |I\Ix |),

where batch_si ze ∈ (0, 1]. The value of batch_si ze is parametrized separately for
each property: batch_si ze = LENGTH_BATCH is used for those heuristics that use
the duration of the intervention, batch_si ze = COST_BATCH for those that use cost,
and batch_si ze = RD_BATCH for those that use resource demand.

4.6 Local search

The purpose of the local search is to reach a local optima with respect to multiple
neighborhoods, after the current solution x has been partially destroyed and recreated
(line 10 of Algorithm 1). It enables further refinement of a current solution, which
could not be achieved solely by the main ALNS ruin-and-recreate operation. The
local search is controlled by theRandomizedVariableNeighborhoodDescent heuristic
(RVND, Duarte et al. 2018), which is described in Algorithm 2.

Algorithm 2 RVND heuristic
Input: solution x

1: improved ← true
2: while improved do
3: shuffle(N)

4: for k ← 1 to kmax do
5: improved ← false
6: x ′ ← best_improve(Nk (x))
7: if objaug(x ′) < objaug(x) then
8: x ← x ′
9: improved ← true
10: break

return x

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

71

The ALNS metaheuristic for the transmission maintenance… 365

The RVND repeatedly performs the following process until no improvement is
achieved in any of the neighborhoods N . First, the k neighborhoods in N are randomly
shuffled (line 3). Then, the neighborhoods in N are sequentially searched for the most
improving move (lines 4–6). If a better solution x ′ is found, the process is restarted
(lines 7–10). Otherwise, a locally optimal solution is reached, and the local search
terminates. Three local search operators, corresponding to different neighborhoods in
N , are specifically proposed for the TMS problem.

1-shift (1SH) reschedules a single intervention i ′ to a new start time t ′. The pair
with the best improvement (i ′, t ′) is selected according to the following formula:

i ′, t ′ = arg max
i∈Ic,t∈H

(objaug(x) − objaug(x\i ∪ (i, t))).

The improved solution x ′ is then obtained as x ′ = x\i ′ ∪(i ′, t ′). In each iteration of the
RVND, the 1SH operator considers a randomly sampled subset Ic ⊂ Ix . The size of Ic
is given by |Ic| = ONE_SHIFT_LIMIT∗ |Ix |, where ONE_SHIFT_LIMIT ∈ [0, 1]
is a tunable solver parameter introduced to control the intensity of the operator.

Random 2-shift (2SH-R) reschedules two randomly selected interventions i1, i2 ∈
Ix . The most improving start times t ′1, t ′2 ∈ H are selected as follows:

t ′1, t ′2 = arg max
t1,t2∈H

(objaug(x) − objaug(x
′)).

The improved solution is then x ′ = x\{i1, i2} ∪ {(i1, t ′1), (i2, t ′2)}). The 2SH-
R operator is applied 2_SHIFT_LIMIT times in each RVND iteration, where
2_SHIFT_LIMIT ∈ N is a tunable solver parameter.

Exclusion 2-shift (2SH-E) is a variant of the 2SH-R operator, which reschedules
two randomly selected interventions i1, i2 ∈ Exc. The 2SH-E operator is applied
only if the exclusion penalty epen of a current solution x is nonzero, and thus some
exclusivity constraints are violated. Again, the parameter 2_SHIFT_LIMIT controls
the intensity of this operator.

5 Results and discussion

This section describes the testing setup in Sect. 5.1, the competition datasets provided
in Sect. 5.2, and the tuning process in Sect. 5.3. The performance of the proposed
ALNS metaheuristic on all competition datasets is documented in Sect. 5, together
with a summary of the competition results and a comparison with the qualification
method. Finally, Sect. 5.5 provides an in-depth analysis of the behavior of ALNS and
evaluates the benefit of its individual components.

5.1 Testing setup

The algorithm is implemented in C++. All results are obtained on a Linux computer
with an Intel Core i7-7700 3.60 GHz processor. According to the competition rules,
the instances are solved in a short 15-minute run and a long 90-min run. In this paper,

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

72

366 D. Woller et al.

Table 5 Datasets

Dataset A Dataset B Dataset C Dataset X
id: |I |, |C |, T , |Exc| id: |I |, |C |, T , |Exc| id: |I |, |C |, T , |Exc| id: |I |, |C |, T , |Exc|
A01: 181, 9, 90, 48 B01: 100, 9, 53, 19 C01: 120, 9, 53, 36 X01: 120, 9, 53, 30

A02: 89, 9, 90, 25 B02: 100, 9, 53, 14 C02: 120, 9, 53, 22 X02: 706, 9, 53, 792

A03: 91, 10, 90, 8 B03: 706, 9, 53, 764 C03: 706, 9, 53, 787 X03: 280, 9, 53, 111

A04: 706, 9, 365, 846 B04: 706, 9, 53, 764 C04: 706, 9, 53, 771 X04: 426, 9, 25, 327

A05: 180, 9, 182, 53 B05: 706, 9, 53, 846 C05: 706, 9, 53, 846 X05: 467, 9, 220, 390

A06: 180, 10, 182, 53 B06: 100, 9, 53, 14 C06: 280, 9, 53, 102 X06: 528, 9, 300, 472

A07: 36, 9, 17, 2 B07: 250, 9, 53, 124 C07: 120, 9, 42, 26 X07: 209, 9, 300, 51

A08: 18, 9, 17, 2 B08: 119, 9, 42, 18 C08: 426, 9, 25, 211 X08: 209, 9, 300, 32

A09: 18, 10, 17, 0 B09: 120, 9, 42, 30 C09: 110, 9, 53, 19 X09: 548, 9, 30, 539

A10: 108, 9, 53, 30 B10: 398, 9, 25, 249 C10: 522, 9, 102, 480 X10: 460, 9, 35, 338

A11: 54, 9, 53, 4 B11: 100, 9, 53, 21 C11: 89, 9, 102, 28 X11: 521, 9, 131, 462

A12: 54, 10, 53, 0 B12: 495, 9, 102, 394 C12: 298, 9, 191, 124 X12: 522, 9, 131, 479

A13: 179, 9, 90, 83 B13: 99, 9, 102, 2 C13: 505, 9, 230, 356 X13: 336, 9, 212, 163

A14: 108, 10, 53, 13 B14: 297, 9, 191, 142 C14: 465, 9, 220, 414 X14: 613, 9, 180, 611

A15: 108, 10, 53, 13 B15: 495, 9, 250, 425 C15: 528, 9, 300, 409 X15: 613, 9, 180, 601

30 short runs and 5 long runs are carried out for each instance. The random number
generator is seeded with consecutive integers, starting with 1−{1, 2, ..., 30} for short
runs and {1, 2, ..., 5} for long runs. The Best Known Scores (BKS) are taken from the
best solutions found in the competition in 90-minute runs. The BKSs were obtained
by various methods from other competitors.

5.2 Datasets

Four datasets, each consisting of 15 instances, were provided throughout the competi-
tion. Each competition phase was evaluated on a different dataset: sprint phase on A,
qualification on A, semifinal on B, and final on C and X. Dataset X was not available
before submitting the final program. The following basic properties of each instance
are listed in Table 5: number of interventions |I |, number of resources |C |, planning
horizon T , and number of exclusions |Exc|. All datasets are publicly available at
ROADEF (2020).

5.3 Parameters tuning

The algorithm has numerous parameters, whichwere tuned specifically for a particular
dataset during the competition. Similarly, the usage of individual destroy and repair
heuristics, local search operators, and initial construction was also parametrized and
tuned. For this purpose, the iterated racing procedure, implemented within the irace
package (López-Ibáñez et al. 2016), was used. The results presented in this paper

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

73

The ALNS metaheuristic for the transmission maintenance… 367

are generated using a common configuration, which was generated after the compe-
tition using all four competition datasets. Although tuning for a particular dataset or
even an instance would provide better results, this approach is less prone to overfit-
ting and allows a more objective assessment of the method’s performance. The final
configuration is provided in Table 6.

5.4 Competition results

This section presents detailed results obtained by the final proposed method on all four
competition datasets. Performance in the short and long runs is evaluated separately.
For each instance, the basic statistical measures (min score, mean score, and standard
deviation) are shown. The results also contain gap values calculated relative to the
BKS. The gap is given in percents (%) and calculated as gap = 100 × score−BK S

BK S ,
where score is either the best value (min gap) or the average value in all runs (mean
gap). As the method does not guarantee the finding of a valid solution, a success rate
measure is provided for datasetsC andX,where themethod did not succeed every time.
The success rate is given as 100× no. of successful runs

total no. of runs (%). The final method is compared
with the qualification method described inWoller and Kulich (2021) on datasets A and
B, for which the qualification method was tuned, and with the results of the winner of
the competition, team S34, on datasets C and X. Finally, a summary of the final results
of the competition is presented, which contains 13 different methods. When different
methods are compared, hypothesis testing is performed. For this purpose, the paired
t-test is employed. Hypothesis H1 states that the average of gaps of the final ALNS
method is better (thus, lower) than that of a reference method, and the confidence level
CL (%) of H1 being true is provided.

Tables 7 and 8 show results on the qualification dataset A. ALNS reached BKS
(or found a solution within the 0.01% gap) in the majority of instances both in the
short and long runs. On average, the mean gap was 0.19% in short runs and 0.10%
in long runs. Therefore, the ALNS can be considered highly efficient on this dataset.
Both tables also show the results of the method submitted in the qualification phase,
which was described in Woller and Kulich (2021). Here, the symbol ↑ indicates that
the qualification method performed worse than the final method, whereas the symbol
↓ indicates the opposite and no symbol means achieving an identical result by both
methods. It can be seen that the average values of the min and mean gaps obtained by
the final method are better than those obtained by the qualification method, although
the difference is close to 0.1%. The confidence level of the final method being better
than the qualification method is 92.71% (15-minute run), respectively 97.76% (90-
minute run).

Tables 9 and 10 show results on the semifinal dataset B. The ALNS generally
remains within the 0.76% gap in short runs and 0.59% in long runs. Again, the results
of the qualification method are provided. Although the qualification method found
better solutions in some cases, the average mean gap of the final method is lower
by 1.14% in the short runs and by 0.73% in the long runs, with confidence levels of
89.12%, respectively 86.03%. Although the average mean gap was reduced by half

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

74

368 D. Woller et al.

Ta
bl
e
6

Fi
na
lc
on

fig
ur
at
io
n

Pa
ra
m
et
er
s

V
al
ue
s

A
L
N
S

D
E
P
T
H

=
0.
13

4,
I
T
E
R
S
_M

A
X

=
88

1,
λ

=
0.
79

1,
�
1

=
89

.5
52

,
�
2

=
26

.4
52

,
�
3

=
0.
46

4

ob
j a
ug

β
lo

w
er

=
63

61
4,

β
u
p
pe
r

=
35

26
5,

γ
=

25
88

1

D
es
tr
oy

he
ur

R
N
D
,M

E
X
,L

R
D
,S

H
,M

E
X
,L

E
X
,L

U

R
ep
ai
r
he
ur

R
N
D
,
C
H
,
M
E
,
L
R
D
1,

L
R
D
2,

L
N
1,

L
N
2,

M
E
X
,
M
U
,
H
1-
M
E
,
H
1-
R
N
D
,
H
1-
M
E
X
,
H
2-
L
R
D
1,

H
2-
H
R
D
,
H
2-
L
N
1,

H
2-
SH

1,
H
2-
M
E
X
,
H
2-
L
E
X
,

H
2-
L
U
,H

3-
C
H
,H

3-
M
E
X
,H
3-
SH

1,
H
3-
M
E
X
,H

3-
L
E
X
,H

3-
M
U
,H

3-
L
U

C
on
st
ru
ct
io
n

L
N
1

H
yb
ri
di
za
tio

n
H

=
0.
11

7,
M
1

=
0.
93

8,
M
2

=
19

0.
7

re
p.

sp
ee
d-
up

L
E
N
G
T
H
_
B
A
T
C
H

=
0.
22

4,
C
O
S
T
_
B
A
T
C
H

=
0.
58

5,
R
D
_
B
A
T
C
H

=
0.
52

8

L
S
op
er
at
or
s

1S
H
,2

SH
-E

L
S
pa
ra
m
s

O
N
E
_
S
H
I
F
T
_
L
I
M
I
T

=
0.
43

3,
T
W
O
_
S
H
I
F
T
_
L
I
M
I
T

=
14

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

75

The ALNS metaheuristic for the transmission maintenance… 369

Table 7 Dataset A—15-min results

Instances ALNS—final ALNS—qualification

Name BKS Objective values Gaps (%) gaps (%)

Min Mean± stdev Min Mean Min Mean

A01 1767.82 1768.23 1768.96±0.53 0.02 0.06 0.05↑ 0.12↑
A02 4671.38 4671.38 4671.50±0.28 0.00 0.00 0.00 0.00

A03 848.18 848.18 848.19±0.01 0.00 0.00 0.00 0.00

A04 2085.88 2093.27 2096.01±3.23 0.35 0.49 0.89↑ 1.75↑
A05 635.22 635.55 635.85±0.24 0.05 0.10 0.07↑ 0.13↑
A06 590.62 591.47 593.08±1.41 0.14 0.42 0.49↑ 1.74↑
A07 2272.78 2272.78 2272.78±0.00 0.00 0.00 0.00 0.00

A08 744.29 744.29 744.29±0.00 0.00 0.00 0.00 0.00

A09 1507.28 1507.29 1507.29±0.00 0.00 0.00 0.00 0.00

A10 2994.85 2994.87 2994.87±0.00 0.00 0.00 0.00 0.00

A11 495.26 495.27 495.29±0.04 0.00 0.01 0.00 0.01

A12 789.63 789.64 789.64±0.00 0.00 0.00 0.00 0.00

A13 1998.66 1998.88 1999.21±0.19 0.01 0.03 0.01 0.02↓
A14 2264.12 2264.91 2279.30±12.90 0.03 0.67 0.05↑ 0.90↑
A15 2268.57 2269.61 2292.59±14.17 0.05 1.06 0.08↑ 0.90↓
Mean 0.04 0.19 0.11↑ 0.37↑

Table 8 Dataset A—90-min results

Instances ALNS—final ALNS—qualification

Name BKS Objective values Gaps (%) gaps (%)

Min Mean± stdev Min Mean Min Mean

A01 1767.82 1768.68 1768.83±0.10 0.05 0.06 0.03↓ 0.06

A02 4671.38 4671.38 4671.38±0.00 0.00 0.00 0.00 0.00

A03 848.18 848.18 848.18±0.00 0.00 0.00 0.00 0.00

A04 2085.88 2093.68 2096.40±3.36 0.37 0.50 0.40↑ 0.81↑
A05 635.22 635.33 635.44±0.07 0.02 0.03 0.05↑ 0.07↑
A06 590.62 592.43 594.64±1.87 0.31 0.68 0.45↑ 0.80↑
A07 2272.78 2272.78 2272.78±0.00 0.00 0.00 0.00 0.00

A08 744.29 744.29 744.29±0.00 0.00 0.00 0.00 0.00

A09 1507.28 1507.28 1507.28±0.00 0.00 0.00 0.00 0.00

A10 2994.85 2994.85 2994.85±0.00 0.00 0.00 0.00 0.00

A11 495.26 495.32 495.32±0.00 0.01 0.01 0.00↓ 0.00↓
A12 789.63 789.63 789.63±0.00 0.00 0.00 0.00 0.00

A13 1998.66 1998.88 1998.95±0.04 0.01 0.01 0.01 0.01

A14 2264.12 2265.03 2265.90±0.65 0.04 0.08 0.03↓ 0.31↑
A15 2268.57 2269.80 2270.91±1.32 0.05 0.10 0.04↓ 0.30↑
Mean 0.06 0.10 0.07↑ 0.16↑

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

76

370 D. Woller et al.

Ta
bl
e
9

D
at
as
et
B
—
15
-m

in
re
su
lts

In
st
an
ce
s

A
L
N
S—

fin
al

A
L
N
S—

qu
al
ifi
ca
tio

n

N
am

e
B
K
S

O
bj
ec
tiv

e
va
lu
es

G
ap
s
(%

)
G
ap
s
(%

)

M
in

M
ea
n
±s

td
ev

M
in

M
ea
n

M
in

M
ea
n

B
01

39
86

.2
0

40
43

.9
3

40
63

.6
6
±1

0.
53

1.
45

1.
94

1.
58

↑
2.
42

↑
B
02

43
01

.6
6

43
27

.5
8

43
40

.4
6
±7

.1
6

0.
60

0.
90

0.
45

↓
1.
04

↑
B
03

35
,2
77

.2
3

35
,6
57

.1
2

35
,7
19

.8
5
±3

9.
95

1.
08

1.
25

2.
04

↑
2.
61

↑
B
04

34
,8
26

.9
5

34
,8
31

.0
6

34
,8
33

.7
9
±1

.7
0

0.
01

0.
02

0.
03

↑
0.
06

↑
B
05

23
97

.1
0

24
27

.1
3

24
31

.9
7
±8

.8
4

1.
25

1.
45

1.
10

↓
1.
16

↓
B
06

42
84

.6
7

42
97

.1
0

43
08

.4
3
±5

.6
9

0.
29

0.
55

0.
43

↑
0.
79

↑
B
07

75
55

.9
5

75
70

.1
7

75
87

.1
3
±7

.5
1

0.
19

0.
41

0.
22

↑
0.
49

↑
B
08

74
35

.7
2

74
35

.7
2

74
35

.7
2
±0

.0
0

0.
00

0.
00

0.
00

0.
00

B
09

74
91

.7
5

75
99

.1
5

76
42

.3
5
±2

0.
52

1.
43

2.
01

1.
21

↓
2.
10

↑
B
10

10
,6
33

.0
2

10
,7
06

.9
3

10
,7
44

.7
8
±1

4.
49

0.
70

1.
05

1.
25

↑
1.
84

↑
B
11

36
26

.0
3

36
40

.3
9

36
49

.1
6
±4

.8
4

0.
40

0.
64

0.
55

↑
0.
97

↑
B
12

37
,6
01

.3
8

37
,8
20

.3
8

37
,8
70

.7
1
±3

1.
27

0.
58

0.
72

1.
35

↑
14

.1
9↑

B
13

50
24

.4
9

50
25

.5
4

50
37

.7
1
±3

.6
3

0.
02

0.
26

0.
31

↑
0.
49

↑
B
14

11
,9
01

.7
7

11
,9
12

.8
3

11
,9
24

.5
2
±7

.4
7

0.
09

0.
19

0.
27

↑
0.
34

↑
B
15

22
,5
63

.5
4

22
,5
64

.3
9

22
,5
66

.8
6
±1

.7
2

0.
00

0.
01

0.
04

↑
0.
06

↑
M
ea
n

0.
54

0.
76

0.
72

↑
1.
90

↑

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

77

The ALNS metaheuristic for the transmission maintenance… 371

Ta
bl
e
10

D
at
as
et
B
—
90
-m

in
re
su
lts

In
st
an
ce
s

A
L
N
S—

fin
al

A
L
N
S—

qu
al
ifi
ca
tio

n

N
am

e
B
K
S

O
bj
ec
tiv

e
va
lu
es

G
ap
s
(%

)
G
ap
s
(%

)

M
in

M
ea
n
±s

td
ev

M
in

M
ea
n

M
in

M
ea
n

B
01

39
86

.2
0

40
44

.0
4

40
47

.5
7
±4

.0
7

1.
45

1.
54

1.
13

↓
1.
71

↑
B
02

43
01

.6
6

43
21

.7
1

43
33

.1
8
±8

.4
3

0.
47

0.
73

0.
24

↓
0.
42

↓
B
03

35
,2
77

.2
3

35
,5
85

.4
0

35
,6
28

.5
6
±2

6.
32

0.
87

1.
00

1.
60

↑
1.
86

↑
B
04

34
,8
26

.9
5

34
,8
30

.4
0

34
,8
31

.8
6
±0

.9
1

0.
01

0.
01

0.
01

0.
02

↑
B
05

23
97

.1
0

24
20

.3
3

24
25

.4
8
±3

.0
1

0.
97

1.
18

1.
03

↑
1.
08

↓
B
06

42
84

.6
7

42
94

.4
1

43
00

.4
3
±5

.1
3

0.
23

0.
37

0.
03

↓
0.
31

↓
B
07

75
55

.9
5

75
69

.8
5

75
77

.9
9
±7

.9
0

0.
18

0.
29

0.
02

↓
0.
34

↑
B
08

74
35

.7
2

74
35

.7
2

74
35

.7
2
±0

.0
0

0.
00

0.
00

0.
00

0.
00

B
09

74
91

.7
5

76
10

.5
3

76
16

.3
2
±6

.3
5

1.
59

1.
66

0.
95

↓
1.
44

↓
B
10

10
,6
33

.0
2

10
,7
20

.1
5

10
,7
25

.8
7
±4

.7
6

0.
82

0.
87

1.
24

↑
1.
40

↑
B
11

36
26

.0
3

36
39

.1
9

36
42

.1
1
±2

.6
2

0.
36

0.
44

0.
32

↓
0.
63

↑
B
12

37
,6
01

.3
8

37
,6
94

.2
8

37
,7
39

.0
4
±2

6.
19

0.
25

0.
37

0.
79

↑
10

.2
5↑

B
13

50
24

.4
9

50
33

.3
3

50
34

.5
3
±1

.1
3

0.
18

0.
20

0.
07

↓
0.
21

↑
B
14

11
,9
01

.7
7

11
,9
11

.2
6

11
,9
16

.4
3
±6

.0
7

0.
08

0.
12

0.
11

↑
0.
18

↑
B
15

22
,5
63

.5
4

22
,5
63

.8
3

22
,5
64

.4
3
±0

.5
8

0.
00

0.
00

0.
01

↑
0.
02

↑
M
ea
n

0.
50

0.
59

0.
50

1.
32

↑

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

78

372 D. Woller et al.

Table 11 Dataset C—15-min results

Instances ALNS - final S34

Name BKS Objective values Gaps (%) Valid Gap (%)

Min Mean± stdev Min Mean (%) Min

C01 8515.90 8524.87 8565.86±17.04 0.11 0.59 100 0.00

C02 3539.80 3561.53 3574.81±6.32 0.61 0.99 100 0.06

C03 33,512.26 34,013.56 34,133.22±60.39 1.50 1.85 100 0.00

C04 37,586.31 37,591.07 37,599.35±4.99 0.01 0.03 100 0.00

C05 3166.18 3183.77 3188.11±2.21 0.56 0.69 100 0.03

C06 8394.48 8485.49 8516.27±15.83 1.08 1.45 100 0.02

C07 6083.04 6116.58 6146.59±20.12 0.55 1.04 100 0.04

C08 11,155.64 11,329.41 11,374.24±22.16 1.56 1.96 100 0.06

C09 5585.65 5619.92 5647.14±14.25 0.61 1.10 100 0.28

C10 43,341.84 44,165.64 44,424.34±123.76 1.90 2.50 100 0.00

C11 5749.96 5757.73 5776.58±7.48 0.14 0.46 100 0.00

C12 12,718.79 12,778.96 12,804.79±11.50 0.47 0.68 100 0.02

C13 42,484.56 43,504.11 43,576.51±47.53 2.40 2.57 97 0.01

C14 26,457.11 26,925.26 26,951.30±21.51 1.77 1.87 43 0.04

C15 39,757.55 40,345.14 40,435.46±46.11 1.48 1.71 70 0.01

Mean 0.98 1.30 94 0.04

Table 12 Dataset C—90-min results

Instances ALNS—final S34

Name BKS Objective values Gaps (%) Valid Gap (%)

Min Mean± stdev Min Mean (%) Min

C01 8515.90 8528.53 8540.50±8.05 0.15 0.29 100 0.00

C02 3539.80 3558.16 3566.61±6.70 0.52 0.76 100 0.00

C03 33,512.26 33,864.63 33,897.94±42.40 1.05 1.15 100 0.00

C04 37,586.31 37,589.96 37,592.46±2.92 0.01 0.02 100 0.00

C05 3166.18 3182.76 3186.49±3.25 0.52 0.64 100 0.00

C06 8394.48 8483.00 8496.60±12.22 1.05 1.22 100 0.00

C07 6083.04 6112.08 6125.20±7.65 0.48 0.69 100 0.00

C08 11,155.64 11,319.23 11,328.73±5.50 1.47 1.55 100 0.00

C09 5585.65 5618.38 5628.46±12.94 0.59 0.77 100 0.15

C10 43,341.84 43,879.90 43,964.73±97.83 1.24 1.44 100 0.00

C11 5749.96 5755.15 5762.74±5.37 0.09 0.22 100 0.00

C12 12,718.79 12,753.57 12,763.37±9.85 0.27 0.35 100 0.00

C13 42,484.56 43,167.98 43,195.75±26.98 1.61 1.67 100 0.00

C14 26,457.11 26,751.71 26,775.25±20.22 1.11 1.20 100 0.00

C15 39,757.55 40,098.38 40,154.43±50.32 0.86 1.00 100 0.00

Mean 0.73 0.86 100 0.01

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

79

The ALNS metaheuristic for the transmission maintenance… 373

when using the final method, the statistical significance decreased compared to dataset
A.

Tables 11 and 12 show the results obtained for the final public dataset C. Here, the
ALNS occasionally dropped below 100% success rate in short runs (instances C13,
C14, andC15), butmaintained 100% in long runs. The averageminimal andmean gaps
are still within 1% of the BKS in long runs and within 1.3% in short runs. Therefore,
the quality of the solution can still be considered very good. Both tables also contain
minimal gaps obtained by the winning team S34, which produced the majority of the
BKSs in the long runs.

Finally, Tables 13 and 14 show the results obtained for the final dataset X. This
dataset proves to be more demanding than the first three datasets, especially in terms
of constraint satisfaction. The average success rate is 91% in the short runs and 95%
in the long runs. Regarding solution quality, the average gaps are close to 2% in long
runs and above 2% in short runs. Therefore, X instances seem rather challenging for
the ALNS, although decent solutions can still be obtained within given time limits.
Again, the winning team S34 found most of the BKSs.

The results of the final phase of the competition, evaluated on datasets C and X, are
summarized in Table 15. Some implementations were not shared. Thus, the results are
adopted from the competition website (ROADEF 2020). In total, 13 of 74 registered
teams advanced to the final phase. For each team, the mean gap, confidence level
CL and success rate across both datasets are presented, together with the competition
score and the final ranking. The competition score is defined in ROADEF (2020). A
team could obtain from 0 to 10 points per instance, 300 in total. A team loses a point
for each competitor that achieves strictly better combined objective value in the short
and long run on a given instance.

The confidence level CL indicates the probability that the overall mean gap of the
proposed ALNS method is better than that of the reference method. Each instance
was solved by each method only once in the final phase. Multiple methods, including
ALNS, did not reach a 100% success rate on some instances. The results of the pro-
posed ALNS, as submitted to the final phase, are shown under team ID J49 and ranked
8th-9th according to the competition scoring. Due to numerical issues in the submitted
implementation, the final version produced a large number of invalid solutions on the
hidden dataset X. The results shown under the ID J49* were generated after the com-
petition using the parameter setup from this paper with the discovered issues fixed.
CL values are calculated using the J49* results to provide a more accurate statistical
comparison.

The CL values are consistent with the final competition ranking. Some of the
methods are publicly available at ROADEF (2020), although not yet described in
a publication. The winning team S34 combined Mixed Integer Programming (MIP)
solver and the custom Local Search, where the MIP was used to find a feasible solu-
tion and the Local Search to refine it. The 3rd team S56 combined a custom GRASP
metaheuristic with a MIP solver but used GRASP for initial construction and MIP for
refining. The 4th team S19 applied purely heuristic A* Local Search, whereas the 5th
J73 and 7th S58 focused on MIP relaxation and eventual problem decomposition. No
details are available about the remaining submissions.

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

80

374 D. Woller et al.

Table 13 Dataset X—15-min results

Instances ALNS—final S34

Name BKS Objective values Gaps (%) Valid Gap (%)

Min Mean± stdev Min Mean (%) Min

X01 4011.38 4079.98 4109.80±16.91 1.71 2.45 100 0.07

X02 32,228.64 33,234.93 33,430.20±79.38 3.12 3.73 100 0.01

X03 8102.59 8242.56 8283.36±18.00 1.73 2.23 90 0.02

X04 11,303.40 11,638.54 11,695.23±24.95 2.96 3.47 100 0.11

X05 22,837.42 23,124.34 23,195.01±32.34 1.26 1.57 33 0.09

X06 47,032.16 47,388.20 47,435.27±22.78 0.76 0.86 97 0.00

X07 13,221.36 13,355.15 13,375.78±14.89 1.01 1.17 100 0.00

X08 13,707.28 13,877.78 13,924.88±27.18 1.24 1.59 100 0.07

X09 20,180.45 21,159.56 21,258.07±56.62 4.85 5.34 100 0.08

X10 17,267.82 17,850.72 17,974.29±59.83 3.38 4.09 100 0.12

X11 39,115.27 39,692.69 39,782.24±57.54 1.48 1.71 57 0.02

X12 47,441.37 48,501.56 48,728.53±120.81 2.23 2.71 100 0.13

X13 15,784.17 15,901.61 15,925.55±15.19 0.74 0.90 100 0.00

X14 79,416.87 80,579.54 80,717.74±81.07 1.46 1.64 100 0.01

X15 45,422.29 46,237.44 46,328.70±64.15 1.79 2.00 87 0.15

Mean 1.98 2.36 91 0.06

Table 14 Dataset X—90-min results

Instances ALNS—inal S34

Name BKS Objective values Gaps (%) Valid Gap (%)

Min Mean± stdev Min Mean (%) Min

X01 4011.38 4064.38 4070.37±7.30 1.32 1.47 100 0.00

X02 32,228.64 33,030.34 33,088.62±54.92 2.49 2.67 100 0.00

X03 8102.59 8249.80 8261.69±9.23 1.82 1.96 80 0.00

X04 11,303.40 11,584.36 11,606.69±25.86 2.49 2.68 100 0.00

X05 22,837.42 23148.55 23,173.44±23.08 1.36 1.47 60 0.00

X06 47,032.16 47,370.69 47,418.99±50.71 0.72 0.82 100 0.00

X07 13,221.36 13,317.45 13,329.05±10.80 0.73 0.81 100 0.00

X08 13,707.28 13,811.97 13,850.28±32.76 0.76 1.04 100 0.00

X09 20,180.45 20,856.26 20899.61±38.01 3.35 3.56 100 0.00

, X10 17,267.82 17,751.09 17,787.52±31.47 2.80 3.01 100 0.00

X11 39,115.27 39,652.85 39,664.42±9.49 1.37 1.40 100 0.00

X12 47,441.37 48,203.23 48,611.43±251.29 1.61 2.47 100 0.10

X13 15,784.17 15,904.22 15,919.43±12.54 0.76 0.86 100 0.00

X14 79,416.87 80,533.26 80,669.00±114.40 1.41 1.58 100 0.00

X15 45,422.29 46,297.63 46,380.03±67.05 1.93 2.11 80 0.00

Mean 1.66 1.86 95 0.01

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

81

The ALNS metaheuristic for the transmission maintenance… 375

Table 15 Final results of the competition

Team 15-min results 90-min results Final results

Mean ± stdev CL Valid Mean ± stdev CL Valid Score Rank
Gap (%) (%) (%) (%) (%) (%) (−) (−)

S34 0.05 ± 0.06 0 100 0.01 ± 0.03 0.00 100 291 1

S66 0.11 ± 0.13 0 90 0.07 ± 0.08 0.00 100 236 2

S56 0.14 ± 0.16 0 93 0.07 ± 0.08 0.00 93 225 3

S19 0.35 ± 0.28 0 100 0.25 ± 0.26 0.00 97 187 4

J73 0.95 ± 1.81 6.75 100 0.69 ± 0.93 0.64 100 139 5

S68 0.54 ± 0.55 0.01 90 0.54 ± 0.55 0.02 87 139 5

S58 0.80 ± 1.96 6.20 93 0.27 ± 0.25 0.00 83 138 7

J49 0.80 ± 0.49 45.97 67 0.66 ± 0.42 35.04 77 77 8

J49* 1.48 ± 1.07 – 100 1.20 ± 0.82 – 100 – –

J43 1.34 ± 1.13 79.01 70 1.45 ± 1.49 82.53 97 77 8

J24 3.23 ± 2.06 100 100 2.71 ± 1.94 100.00 100 49 10

J3 3.09 ± 2.08 100 97 1.93 ± 1.52 99.96 100 48 11

S14 2.46 ± 1.95 99.48 83 2.14 ± 1.73 99.79 97 40 12

S28 2.54 ± 2.13 99.53 53 1.99 ± 1.66 99.68 57 13 13

5.5 ALNS analysis

The behaviour of the ALNS is further analyzed in a series of experiments. The goal
of this section is to provide insight into the algorithm operation and assess the benefit
of individual components.

The first experiment, presented in Table 16, documents the importance of local
search, which is not a standard part of ALNS. The following two setups were tested
on dataset X: standard ALNS without local search and isolated local search without
the ALNS. The results show that the standard ALNS reaches a mean gap of 2.70%,
but with a success rate of only 32% overall and 0% for 7 instances out of 15. The
isolated local search achieves a slightly better mean gap of 2.23%, but its success rate
on all instances is only 12% and it finds a valid solution only for 5 instances. Thus,
both setups perform quite poorly in terms of finding valid solutions. Presumably, the
standard ALNS provides a robust diversification mechanism but fails to reach valid
local optima without the intensification element of the local search.

The second experiment investigates the benefit brought by individual components
used in the final tuned setup on dataset X. The efficiency of a component is estimated
as the percentage ratio between the number of improving calls and the total calls of
the component. A call is considered improving if it leads to a new overall best solution
after destroying, repairing, and local search. The efficiency of destroy heuristics on
dataset X is summarized in Fig. 2a. One data point corresponds to a single run on a
single instance, and each boxplot summarizes data across all instances and runs for a
single heuristic. Individual heuristics are sorted fromhighest to lowestmean efficiency.
The mean efficiency of all heuristics is around 10%, with the random destroy heuristic

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

82

376 D. Woller et al.

Table 16 Dataset X—15-min results, separating components

Instances name standard ALNS Isolated local search

Gaps (%) valid Gaps (%) Valid

Min Mean (%) Min Mean (%)

X01 2.06 2.61 100 3.02 3.58 20

X02 7.21 8.38 30 – – 0

X03-X05 – – 0 – – 0

X06 1.22 1.41 47 – – 0

X07 1.20 1.56 100 1.81 1.96 100

X08 1.41 1.73 97 1.51 1.70 30

X09 – – 0 – – 0

X10 5.22 5.79 17 – – 0

X11-X12 – – 0 – – 0

X13 1.18 1.32 63 1.39 1.48 30

X14 2.12 2.57 27 2.28 2.42 7

X15 – – 0 – – 0

Mean 2.70 3.17 32 2.00 2.23 12

(a) (b)

Fig. 2 Destroy heuristics efficiency

being the most successful. Each boxplot contains a large number of outliers, often
reaching 50% efficiency. This is also documented in Fig. 2b, which displays the same
statistics for instance X15. Here, both the heuristic ranking and their efficiency differ
significantly from the averageddata inFig. 2a. The sameanalysiswas performed for the
repair heuristics (Fig. 3) and the local search operators (Fig. 4a). The repair heuristics
perform similarly to the destroy heuristics: their mean efficiency is also close to 10%
with lots of outliers. In conclusion, all the heuristics not disabled by the automated
tuning process have very similar mean efficiency. However, their performance greatly
varies from instance to instance, as documented by the large number of outliers. Thanks

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

83

The ALNS metaheuristic for the transmission maintenance… 377

Fig. 3 Repair heuristics eficiency

(a) Local search operators efficiency (b) Time spent by components

Fig. 4 Local search

to the ALNS weight-adjusting process, unsuccessful heuristics on a given instance are
called less frequently and can be kept in the tuned configuration.

As for local search operators, efficiency was measured by counting improving calls
within the RVND heuristic, not the high-level ALNS. The data show that the mean
efficiency of the very simple 1-shift operator is close to 90%, whereas the Exclusion
2-shift’s is below 5%, although with a large number of outliers.

The third experiment focuses on the CPU time requirements of individual compo-
nents and is summarized in a single pie chart in Fig. 4b. It shows that 74.9% of the
computational budget is consumed by the local search, 18.9% by repairing and only
6.2% by destroying. The ratio between destroying and repairing is given by the higher
complexity of repair heuristics, which need to select both an intervention to schedule
and its start time, whereas destroy heuristics select only an intervention to remove.
The time spent by the local search is controlled by parameters ONE_SHIFT_LIMIT

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

84

378 D. Woller et al.

(a) 5 min (b) 15-minute (c) 45 min (d) 90-minute

Fig. 5 Selection weights of destroy heuristics in time

Table 17 Very long runs

Instances ALNS - final

Name BKS Objective values Gaps (%) Valid

Min Mean± stdev Min Mean (%)

X03 8102.59 8205.44 8211.85 ± 4.83 1.27 1.35 100

X05 22,837.42 23,064.99 23,082.82 ± 15.92 1.00 1.07 100

X15 45,422.29 45,916.02 45,992.48 ± 61.12 1.09 1.26 100

Average 1.12 1.23 100

and TWO_SHIFT_LIMIT, which were subject to tuning. Thus, the presented ratio is
presumably close to an optimal setup.

The fourth experiment attempts to provide insight into the ALNS learning mech-
anism, which adjusts the selection weights of individual heuristics based on their
previous performance. The normalized selection weights of destroy heuristics in dif-
ferent time steps, averaged acrossmultiple runs on a single instanceX15, are visualized
by pie charts in Fig. 5. It can be seen that the selection weights do not change dramat-
ically and generally oscillate between 10 − 20%. The selection weights of individual
heuristics do not copy their relative efficiency, shown in Fig. 2b, as their benefit changes
over time. The intensity of the learning mechanism is controlled by the parameter
λ ∈ [0, 1], where 0 corresponds to no adjusting and 1 to no memory. It is tuned to
λ = 0.791; thus, the weight adjusting is rather aggressive and implements short-term
memory.

The final fifth experiment addresses those instances for which a valid solution was
not always found even in the long 90-minute runs: X03, X05, and X15. Each of these
instanceswas solved 8 timeswith a random seed, given a time budget of 8h. The results
of this experiment are provided in Table 17. The solver achieved a 100% success rate in
this experiment, thus indicating that it is capable of consistently finding valid solutions
for all competition datasets, although not always within the competition-defined time
budget. This is illustrated in Fig. 6, which shows the convergence of the solver for
instances X05 and X15 over multiple runs. The values of the augmented objective
after each improving ALNS iteration are plotted against time. Invalid solutions, valid
solutions, and first valid solutions in a given run are distinguished. In both instances,
the solver is shown to sometimes work with an invalid solution even after the 90-

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

85

The ALNS metaheuristic for the transmission maintenance… 379

(a) (b)

Fig. 6 ALNS convergence

minute time limit. The augmented objective function does not converge smoothlywhen
improving invalid solutions, as it contains a penalty for unmet exclusivity constraints,
which changes in discrete steps.

6 Conclusions

An adaptation of the ALNS metaheuristic for a variant of the transmission mainte-
nance scheduling (TMS) problem assigned within the ROADEF Challenge 2020 is
described in this paper. Although ALNS is not a commonly applied metaheuristic in
TMS problems, the proposed method performed well in the competition of 74 teams,
as it finished 6th in the semifinal phase (1st in the Junior category) and 8-9th in the
final phase (2nd–3rd in the Junior category). In terms of solution quality, the method
consistently finds solutions within the 2% gap on themost difficult competition dataset
X and within 1% of the remaining datasets A, B, and C. The main contribution of the
approach lies in proposing a large number of destroy and repair heuristics that exploit
individual properties and constraints of the problem. These heuristics could easily be
reapplied to other scheduling problems with a similar set of properties.

The paper also provides an experimental analysis of the proposed approach.
Although the method is tuned, only 10% of the ALNS iterations result in an improved
solution. The proposed method employs a penalization mechanism to satisfy multiple
hard constraints of the problem. The method is shown to produce valid solutions with
a high success rate (above 89% in 90-min runs). The approach could be improved by
incorporating a complete procedure to ensure that a valid solution is returned every
time, either custom or based on an exactMIP solver. The standardALNSmetaheuristic
is extended by a local search, which is shown to be essential for its performance but
also to be responsible for consuming most of the computational budget. The conver-
gence rate of the proposed method could be further improved by speeding up the local
search, for example, by restricting its operators only to neighborhoods consisting of
valid solutions.

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

86

380 D. Woller et al.

Acknowledgements The work on this paper was supported by the Czech Science Foundation grant
23 - 05104S. The work of David Woller was also supported by the Grant Agency of the Czech Tech-
nical University in Prague, grant No. SGS23/122/OHK3/2T/13. Computational resources were supplied
by the project “e-Infrastruktura CZ” (e-INFRA CZ LM2018140) supported by the Ministry of Education,
Youth and Sports of the Czech Republic.

References

Abirami, M., Ganesan, S., Subramanian, S., Anandhakumar, R.: Source and transmission line maintenance
outage scheduling in a power system using teaching learning based optimization algorithm. Appl. Soft
Comput. 21, 72–83 (2014). https://doi.org/10.1016/j.asoc.2014.03.015

Artigues, C., Bourreau, E., Jost, V., Kedad-Sidhoum, S., Ramond, F.: Trains do not vanish: the
ROADEF/EUROchallenge 2014.Ann.Oper. Res. 271(2), 1091–1105 (2018). https://doi.org/10.1007/
s10479-018-3066-x

Back, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation, 1st edn. IOP Publishing
Ltd. (1997)

Ben Hamida, S., Schoenauer, M.: An adaptive algorithm for constrained optimization problems. In: Inter-
national Conference on Parallel Problem Solving from Nature, pp. 529–538 (2000). Springer

Borůvka, O.: O jistém problému minimálním. Práce Moravské pírodovědecké společnosti II I(3), 37–58
(1926)

Burke, E.K., Smith, A.J.: Hybrid evolutionary techniques for the maintenance scheduling problem. IEEE
Trans. Power Syst. 15(1), 122–128 (2000). https://doi.org/10.1109/59.852110

Da Silva, E.L., Schilling, M.T., Rafael, M.C.: Generation maintenance scheduling considering transmission
constraints. IEEE Trans. Power Syst. 15(2), 838–843 (2000). https://doi.org/10.1109/59.867182

Duarte, A., Sánchez-Oro, J.,Mladenović, N., Todosijević, R.: In:Martí, R., Pardalos, P.M., Resende,M.G.C.
(eds.) Variable Neighborhood Descent, pp. 341–367. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-07124-4_9

El-Sharkh, M.Y.: Clonal selection algorithm for power generators maintenance scheduling. Int. J. Electr.
Power Energy Syst. 57, 73–78 (2014). https://doi.org/10.1016/j.ijepes.2013.11.051

Feng, C., Wang, X., Li, F.: Optimal maintenance scheduling of power producers considering unexpected
unit failure. IET Gener. Transm. Distrib. 3(5), 460–471 (2009). https://doi.org/10.1049/iet-gtd.2008.
0427

Froger, A., Gendreau, M., Mendoza, J.E., Pinson, É., Rousseau, L.M.: Maintenance scheduling in the
electricity industry: a literature review. Eur. J. Oper. Res. 251(3), 695–706 (2016). https://doi.org/10.
1016/j.ejor.2015.08.045

Geetha, T., Swarup, K.S.: Coordinated preventive maintenance scheduling of GENCO and TRANSCO in
restructured power systems. Int. J. Electr. Power Energy Syst. 31(10), 626–638 (2009). https://doi.
org/10.1016/j.ijepes.2009.06.006

He, L., Liu, X., Laporte, G., Chen, Y., Chen, Y.: An improved adaptive large neighborhood search algorithm
formultiple agile satellites scheduling.Comput.Oper.Res.100, 12–25 (2018). https://doi.org/10.1016/
j.cor.2018.06.020

Huang, S.J.: Generator maintenance scheduling: a fuzzy system approach with genetic enhancement. Electr.
Power Syst. Res. 41(3), 233–239 (1997). https://doi.org/10.1016/s0378-7796(96)01194-7

Joines, J.A.,Houck,C.R., et al.: On the use of non-stationary penalty functions to solve nonlinear constrained
optimization problemswithGa’s. In: International Conference on EvolutionaryComputation, pp. 579–
584 (1994)

Khalid,W., Soleymani, I., Mortensen, N.H., Sigsgaard, K.V.: Ai-basedmaintenance scheduling for offshore
oil and gas platforms. In: 2021 Annual Reliability and Maintainability Symposium (RAMS), pp. 1–6
(2021). https://doi.org/10.1109/RAMS48097.2021.9605794

Kovacs, A.A., Parragh, S.N., Doerner, K.F., Hartl, R.F.: Adaptive large neighborhood search for service
technician routing and scheduling problems. J. Sched. 15(5), 579–600 (2012). https://doi.org/10.1007/
s10951-011-0246-9

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The irace package:
iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016). https://
doi.org/10.1016/j.orp.2016.09.002

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

87

The ALNS metaheuristic for the transmission maintenance… 381

Lu, C., Wang, J., Sun, P.: Short-term transmission maintenance scheduling based on the benders decompo-
sition. In: APPEEC 2012 (2012). https://doi.org/10.1109/APPEEC.2012.6307696

Lv, C., Wang, J., You, S., Zhang, Z.: Short-term transmission maintenance scheduling based on the Benders
decomposition. Int. Trans. Electric. Energy Syst. 25(4), 697–712 (2015). https://doi.org/10.1002/etep.
1867

Michel, L., Hentenryck, P.V.: In: Martí, R., Pardalos, P.M., Resende, M.G.C. (eds.) Constraint-Based Local
Search, pp. 223–260. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-07124-4_7

Mollahassani-Pour, M., Abdollahi, A., Rashidinejad, M.: Application of a novel cost reduction index to
preventive maintenance scheduling. Int. J. Electr. Power Energy Syst. 56, 235–240 (2014). https://doi.
org/10.1016/j.ijepes.2013.11.026

Moro, L.M., Ramos, A.: Goal programming approach tomaintenance scheduling of generating units in large
scale power systems. IEEE Trans. Power Syst. 14(3), 1021–1028 (1999). https://doi.org/10.1109/59.
780915

Pandžić, H., Conejo, A.J., Kuzle, I., Caro, E.: Yearly maintenance scheduling of transmission lines within
a market environment. IEEE Trans. Power Syst. 27(1), 407–415 (2012). https://doi.org/10.1109/
TPWRS.2011.2159743

Pisinger, D., Ropke, S.: Large neighborhood search. In: Handbook of Metaeuristics, pp. 399–419. Springer,
Cham (2010). https://doi.org/10.1007/978-1-4419-1665-5_13

Reihani, E., Sarikhani, A., Davodi, M., Davodi, M.: Reliability based generator maintenance scheduling
using hybrid evolutionary approach. Int. J. Electr. Power Energy Syst. 42(1), 434–439 (2012). https://
doi.org/10.1016/j.ijepes.2012.04.018

Rifai, A.P., Nguyen, H.-T., Dawal, S.Z.M.: Multi-objective adaptive large neighborhood search for dis-
tributed reentrant permutation flow shop scheduling. Appl. Soft Comput. 40, 42–57 (2016). https://
doi.org/10.1016/j.asoc.2015.11.034

ROADEF: Challenge ROADEF/EURO 2020: Maintenance planning Problem (2020). https://www.roadef.
org/challenge/2020/en/

Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem
with time windows. Transp. Sci. 40(4), 455–472 (2006). https://doi.org/10.1287/trsc.1050.0135

Ruiz, M., Tournebise, P., Panciatici, P.: ROADEF Challenge RTE: Grid Operation-Based Outage Mainte-
nance Planning. Technical report, RTE (2020)

Salinas San Martin, L., Yang, J., Liu, Y.: Hybrid NSGA III/dual simplex approach to generation and
transmission maintenance scheduling. Int. J. Electric. Power Energy Syst. 135, 10 (2022). https://doi.
org/10.1016/j.ijepes.2021.107498

Saraiva, J.T., Pereira, M.L., Mendes, V.T., Sousa, J.C.: A simulated annealing based approach to solve the
generator maintenance scheduling problem. Electr. Power Syst. Res. 81(7), 1283–1291 (2011). https://
doi.org/10.1016/j.epsr.2011.01.013

Schlünz, E.B., Van Vuuren, J.H.: An investigation into the effectiveness of simulated annealing as a solution
approach for the generator maintenance scheduling problem. Int. J. Electr. Power Energy Syst. 53(1),
166–174 (2013). https://doi.org/10.1016/j.ijepes.2013.04.010

Shahidehpour, M., Marwali, M.: Maintenance Scheduling in Restructured Power Systems. Springer, New
York (2000). https://doi.org/10.1007/978-1-4615-4473-9

Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In:
InternationalConference onPrinciples andPractice ofConstraint Programming, pp. 417–431. Springer
(1998)

Smith, S.L., Imeson, F.: GLNS: an effective large neighborhood search heuristic for the generalized traveling
salesman problem. Comput. Oper. Res. (2017). https://doi.org/10.1016/j.cor.2017.05.010

Suresh, K., Kumarappan, N.: Hybrid improved binary particle swarm optimization approach for generation
maintenance scheduling problem. Swarm Evol. Comput. 9, 69–89 (2013). https://doi.org/10.1016/j.
swevo.2012.11.003

ThanKyi,M.,Maw, S.S., Naing, L.L.:Mathematical estimation formaximumflow in electricity distribution
network by Ford–Fulkerson iteration algorithm. Int. J. Sci. Res. 9(8), 9229 (2019). https://doi.org/10.
29322/ijsrp.9.08.2019.p9229

Volkanovski, A., Mavko, B., Boševski, T., Čauševski, A., Čepin, M.: Genetic algorithm optimisation of the
maintenance scheduling of generating units in a power system. Reliab. Eng. Syst. Saf. 93(6), 779–789
(2008). https://doi.org/10.1016/j.ress.2007.03.027

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

88

382 D. Woller et al.

Wang, Y., Zhong, H., Xia, Q., Kirschen, D.S., Kang, C.: An approach for integrated generation and trans-
mission maintenance scheduling considering N-1 contingencies. IEEE Trans. Power Syst. 31(3),
2225–2233 (2016). https://doi.org/10.1109/TPWRS.2015.2453115

Wen,M., Linde, E., Ropke, S., Mirchandani, P., Larsen, A.: An adaptive large neighborhood search heuristic
for the electric vehicle scheduling problem. Comput. Oper. Res. 76, 73–83 (2016). https://doi.org/10.
1016/j.cor.2016.06.013

Woller, D., Kulich, M.: The ALNS metaheuristic for the maintenance scheduling problem. In: Proceedings
of the 18th International Conference on Informatics in Control, Automation and Robotics, ICINCO
2021, pp. 156–164 (2021). https://doi.org/10.5220/0010552101560164

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

CHAPTER 5. THE ALNS METAHEURISTIC FOR THE TRANSMISSION
MAINTENANCE SCHEDULING

89

Chapter 6

Metaheuristic solver for problems with
permutative representation

The fourth core publication is called Metaheuristic solver for problems with permuta-
tive representation [c4]. The initial concept was developed in the diploma thesis [s12] and
further expanded in the bachelor thesis [s13], both of which were supervised by the au-
thor. The developed solver was also presented at the 23rd Conference of the International
Federation of Operational Research Societies (IFORS 2023) [96].

[c4] Woller, D., Hrazd́ıra, J., Kulich, M., “Metaheuristic Solver for Problems
with Permutative Representation”, in Intelligent Computing & Optimization,
Springer International Publishing, 2023, pp. 42–54, isbn: 978-3-031-19958-5.
doi: 10.1007/978-3-031-19958-5_5, 50% contribution, citations: 0 in
Web of Science, 0 in Scopus, 1 in Google Scholar.

This stream of work chronologically follows the core publications already presented
and is directly motivated by them. Instead of developing a specialized solver for a single
novel combinatorial optimization problem, we propose a simple formalism that can be
used to formulate a large class of problems with permutative representation. That is,
their solution can be fully encoded as an ordered sequence of nodes from a predefined set.
The nodes may appear repeatedly in the solution sequence as long as the frequency of
their occurrence stays within the predefined bounds. The cost function may be arbitrary,
and all constraints need to be described in the form of penalty functions.

We introduce a generic metaheuristic solver capable of solving any problem defined
in the proposed formalism. The solver offers several local search-based metaheuristics
and a bank of 11 local search operators, 3 construction procedures, and 6 perturbation
operators. It is designed to be highly modular - given a specific problem to solve, the solver
can be automatically configured, both in terms of numerical parameters and selection of
individual components. Individual penalty functions are aggregated and treated by a
static penalization mechanism.

The experimental results present a comparison with the commercial Gurobi Opti-
mizer [23], which is a state of the art generic IP solver. In a fixed-time experiment, the
proposed generic metaheuristic solver outperformed the Gurobi Optimizer both in terms
of solution quality and scalability. The experiment was carried out for several textbook op-
timization problems, specifically the Capacitated Vehicle Routing Problem (CVRP), Non-
Permutation Flowshop Scheduling Problem (NPFS), and Quadratic Assignment Problem
(QAP), all of which are NP-hard, but have only a few constraints. The solver was de-
ployed to problems richer in constraints in the follow-up work [s13], [c5]. In [c5], it was
deployed to several newly proposed variants of the TSP and HCP and solution feasibil-
ity was guaranteed by adding a custom exact construction procedure. In [s13], it was
used to solve the EVRP and TMS competition problems addressed in previous core pub-
lications and compared with problem-specific metaheuristic algorithms. The constraint
satisfaction rate was improved by adding the Adaptive Segregational Constraint Handling
Evolutionary Algorithm (ASCHEA) to the generic solver.

90

https://doi.org/10.1007/978-3-031-19958-5_5

Metaheuristic solver for problems with
permutative representation

David Woller 1,2,(�), Jan Hrazd́ıra1, and Miroslav Kulich 1

1 Czech Institute of Informatics, Robotics, and Cybernetics
Czech Technical University in Prague

Jugoslávských partyzán̊u 1580/3, Praha 6, 160 00, Czech Republic
2 Department of Cybernetics, Faculty of Electrical Engineering

Czech Technical University in Prague
Karlovo náměst́ı 13, Praha 2, 121 35, Czech Republic

wolledav@cvut.cz

Abstract. Today, a large proportion of combinatorial optimization prob-
lems can be efficiently formulated as a mixed-integer program and solved
with an exact solver. However, exact solvers do not scale well and thus
custom metaheuristic algorithms are being designed to provide better
scalability at the cost of no optimality guarantees and time-consuming
development. This paper proposes a novel formalism for a large class of
problems with permutative representation, together with a metaheuris-
tic solver addressing these problems. This approach combines the advan-
tages of both exact and metaheuristic solvers: straightforward problem
formulation, scalability, low design time, and ability to find high quality
solutions. Three different problems are formulated in the proposed for-
malism and solved with the proposed solver. The solver is benchmarked
against the Gurobi Optimizer and significantly outperforms it in exper-
iments with a fixed computational budget.

Keywords: Metaheuristics, Iterated Local Search, Variable Neighbor-
hood Search, Permutative Representation

1 Introduction

Despite its relatively short history, combinatorial optimization is now a ma-
ture field with robust theoretical foundations and a broad portfolio of powerful
methods. New and challenging applications are constantly emerging in a wide
range of diverse fields, such as artificial intelligence, machine learning, supply
chain management, or financial engineering. However, the underlying optimiza-
tion problems are often intractable. Therefore, selecting the most suitable ap-
proach typically requires a trade-off between some of several criteria: optimality
or approximation guarantee, design time, runtime, scalability, and versatility.

When the solution optimality is required, the available design time is lim-
ited, and the instances are of moderate size, the most suitable choice is to use
Integer Programming (IP). Today, multiple solvers are available, such as Gurobi,

CHAPTER 6. METAHEURISTIC SOLVER FOR PROBLEMS WITH
PERMUTATIVE REPRESENTATION

91

2 David Woller , Jan Hrazd́ıra, and Miroslav Kulich

CPLEX, or Xpress, that provide highly efficient implementations of state of the
art exact algorithms. The only user requirement is to formalize the problem and
create a sensible model, which makes these solvers very attractive and widely
used in practice. However, an explicit IP formulation of a high-dimensional prob-
lem may result in an immensely large model, which can be difficult to work with
because of memory limitations. Furthermore, the computational complexity of
an exact solver is inherently exponential when solving an NP-hard problem,
making it intractable. For these reasons, scalability remains a major limitation
of problem-nonspecific IP solvers.

Computationally challenging applications are often tackled by metaheuris-
tics, high-level algorithmic frameworks that can be adapted to problem-specific
algorithms. Metaheuristic algorithms typically do not provide any guarantees
about the quality of the solution, but are frequently used in applications where
no other approach is computationally feasible. Most applications of metaheuris-
tics require considerable design time and the implementations are not versatile.
The reason for this is that essential components, such as repair heuristics, de-
stroy heuristics, or local search operators, need to be tailored to a particular
problem.

This paper presents a generic metaheuristic solver that is capable of solving a
set of problems that share the same solution representation. The main goal is to
combine the scalability of custom metaheuristic algorithms with the versatility of
modeling paradigms such as IP. The representation of interest encodes a solution
as an ordered sequence of nodes which can have arbitrary length and frequency
of individual nodes. Any additional constraints and specifics are incorporated
into an aggregated fitness function through penalties. This representation allows
for the addressing of a broad portfolio of routing, scheduling, or sequencing
problems. The proposed solver is benchmarked against the Gurobi optimizer on
three NP-hard problems. The main contributions of this paper are:

– proposing a unifying formalism for a wide class of permutative problems,

– proposing a generic solver working with the proposed formalism,

– providing a fair and extensive benchmark against the Gurobi optimizer.

The remainder of this paper is structured as follows. Section 2 discusses related
works. Section 3.1 provides the definition of the proposed formalism, as well as
the definitions of three classical problems in this formalism. The proposed solver
is described in Section 3.2. The experimental results are presented in Section 4
and the conclusions in Section 5.

2 Related Works

First, several metaheuristic solvers capable of addressing a wider portfolio of
related problems exist. For example, the LKH3 solver [9], is able to solve a large
number of variants of Vehicle Routing Problem, Sequential Ordering Problem,
Travelling Repairman Problem, Travelling Salesman Problem, and others by

CHAPTER 6. METAHEURISTIC SOLVER FOR PROBLEMS WITH
PERMUTATIVE REPRESENTATION

92

Metaheuristic solver for problems with permutative representation 3

transforming these problems into a standard TSP. Another example is the Uni-
fied Hybrid Genetic Search for Multiattribute Vehicle Routing Problems [21],
addressing a broad range of VRP problems. Other solvers are designed as black-
box solvers for any problem with a solution representable by a fixed-length per-
mutation. These are, for example, the genetic algorithm (GA) combined with
Branch & Bound technique proposed in [14], or the Bayesian optimization ap-
proach in [5]. However, the solution representation used in this paper is more
general as it allows the solution sequence to have arbitrary length and node
frequency.

Second, various metaheuristic frameworks exist. The purpose of these frame-
works is to provide problem-independent building blocks that can be used to ef-
ficiently assemble a specialized solver. The common drawback is that the use of a
custom solution representation typically requires the implementation of custom
operators. According to a recent survey [17], most widely used frameworks are
the Evolutionary Computation Research System [18] and the ParadiseEO frame-
work [6]. Both implement a large number of mostly evolutionary algorithms and
support basic representations such as integer vectors, binary vectors, or fixed-
length permutations. Some frameworks are more specialized. For example, the
MOEA framework [8] focuses on multi-objective evolutionary algorithms, and
the JAMES framework [4] specializes in local search metaheuristics.

Third, the proposed solver contains a plethora of alternative heuristics, op-
erators, and parameters that should be chosen appropriately for the problem at
hand. Therefore, the automated design and configuration of heuristic algorithms
is also a relevant domain. For this purpose, an external heuristic tuning algo-
rithm is often used [19]. Some successful approaches are: the ParamILS tool [2]
based on the Iterated Local Search metaheuristic [13], the Sequential Model-
Based Algorithm Configuration tool [10], or the Iterated Racing tool [12], which
was actually used for configuration of the proposed solver.

3 Methodology

This section details the main contributions. The common formalism used by the
proposed solver is introduced in Section 3.1 and its usage is demonstrated on
three problems: Capacitated Vehicle Routing Problem (CVRP), Non-Permuta-
tion Flowshop Scheduling Problem (NPFS) and Quadratic Assignment Problem
(QAP). The proposed metaheuristic solver is described in Section 3.2.

3.1 Problem definitions

We newly propose the following generic problem definition that serves as an
interface between the proposed solver and the specific problem to be solved. It
defines only a few properties common to a large number of problems with permu-
tative representation, which are known to the solver. Problem-specific properties
are intended to be translated into penalty functions, which are then aggregated
with the problem fitness function.

CHAPTER 6. METAHEURISTIC SOLVER FOR PROBLEMS WITH
PERMUTATIVE REPRESENTATION

93

4 David Woller , Jan Hrazd́ıra, and Miroslav Kulich

Generic problem definition is given as follows. Let A be a set of n unique
nodes (Eq. 1), which can be present in a solution vector X of length m (Eq. 5). A
node ai ∈ A can be present inX multiple times and the number of its occurrences
is given by frequency fi (Eq. 6-7). Here, the logical expression [[.]] evaluates to 1
if true, 0 otherwise. Each element ai ∈ A has defined lower and upper bounds
li, ui in the vectors L,U (Eq. 2-3), which limit the frequency of ai (Eq. 8). The
goal is to minimize the augmented fitness function g(X) (Eq. 4).

Given set of nodes A = {a1, a2, ..., an}, A ⊂ N (1)

and vectors of bounds L = [l1, l2, ..., ln], L ∈ Nn
0 (2)

U = [u1, u2, ..., un], U ∈ Nn
0 (3)

minimize fitness function g(X) : Am −→ R (4)

where X = [x1, x2, ..., xm], X ∈ Am (5)

F = [f1, f2, ..., fn], F ∈ Nn
0 (6)

∀ai ∈ A : fi =

m∑
j=1

[[xj = ai]] (7)

∀ai ∈ A : li ≤ fi ≤ ui (8)

Note that X can have variable length if L ̸= U . Also, the fitness function
g(X) can be completely arbitrary. In the following applications, it is expressed
as g(X) = ĝ(X)+p(X), where ĝ(X) is the actual fitness function of the problem
currently solved and p(X) is a penalty function enforcing additional problem-
specific properties in X.

Capacitated Vehicle Routing Problem (CVRP) is a classic routing prob-
lem. The CVRP’s objective is to serve a set of customers with a fleet of k vehicles,
while satisfying the demands of customers on cargo and respecting the limited
load capacity of the vehicles. An equivalent interpretation used here is that a
single vehicle is required to carry out at most k trips, while reloading the cargo
at the central depot. The CVRP can be defined in the proposed formalism as
follows.

CHAPTER 6. METAHEURISTIC SOLVER FOR PROBLEMS WITH
PERMUTATIVE REPRESENTATION

94

Metaheuristic solver for problems with permutative representation 5

D = a1 (9)

L = [2, 1, ..., 1] (10)

U = [k + 1, 1, ..., 1] (11)

ĝ(X) =

m−1∑
i=1

cost(xi, xi+1) (12)

p(X) = M([[x1 ̸= D]] + [[xm ̸= D]]) (13)

+M
m∑
i=1

max(0, dem(xi)[[load(xi) < dem(xi)]]) (14)

where load(xi) =

0, if i = 1

Q, if xi−1 = D

load(xi−1)− dem(xi−1), otherwise

(15)

The set of nodes A contains n − 1 customers to visit and a single depot D,
which is fixed at a1 (Eq. 9). The solution vector X contains individual trips sep-
arated by depot visits: X = [D,x2, ..., D, ..., xm−1, D]. The bounds L,U ensure
that each customer is visited exactly once and the depot is visited at most k+1
times (Eqs.10-11). The CVRP fitness function ĝ(X) corresponds to the total
distance traveled by the vehicle (Eq. 12), where cost(xi, xi+1) is the distance
between the nodes xi and xi+1. Two additional penalties must be added by the
penalty function p(X). The vehicle must start and end at the depot (Eq. 13) and
the vehicle must have sufficient cargo load to fully satisfy each visited customer
(Eq. 14). Here, load(xi) is the vehicle cargo load before entering node xi and
dem(xi) is the demand of node xi. The vehicle is empty before entering the first
node in X and loaded to its maximum load capacity Q in the depot (Eq. 15).
Finally, M is a large constant.

Non-Permutation Flowshop Scheduling Problem (NPFS) is a variant of
a more common Flowshop Scheduling Problem (FSP). In NPFS, n jobs from A
have to be scheduled on k machines. The solution vector X = [x1, x2, ..., xm] =
[π1, π2, ..., πk] consists of k permutations πj of length n, where each of these
permutations determines the order of processing of the jobs on the machine
j ∈ {1, 2, ..., k}. Therefore, m = nk. The bounds L,U reflect that each job has
to be processed on each machine exactly once (Eqs. 16-17). The order in which
individual machines are visited by each job is fixed and is given by the index
k of the machine. Unlike in the FSP, the processing order within individual
machines can differ in NPFS; therefore, generally πi ̸= πj . In the following
equations, start(ai, πj) is the current start time of the processing of the job ai
in permutation πj , proc(ai, j) is the processing time of the job ai in machine j,
and f

πj
ai is the frequency of the node ai in permutation πj .

CHAPTER 6. METAHEURISTIC SOLVER FOR PROBLEMS WITH
PERMUTATIVE REPRESENTATION

95

6 David Woller , Jan Hrazd́ıra, and Miroslav Kulich

L = [k, k, ..., k] (16)

U = [k, k, ..., k] (17)

ĝ(X) = max
ai∈A

(start(ai, πk) + proc(ai, k)) (18)

p(X) = M
n∑

i=1

k∑
j=1

|1− fπj
ai
| (19)

+M

n∑
i=1

k−1∑
j=1

[[start(ai, πj+1) ≥ start(ai, πj) + proc(ai, j)]] (20)

The goal is to minimize the total makespan, i.e., the last job on the k-
th machine should finish as early as possible (Eq. 18). Two penalties must be
defined in p(X). First, each job has to be scheduled exactly once on each machine
(Eq. 19). Second, a job ai can start to be processed on machine j + 1 only after
it finishes on machine j (Eq. 20).

Quadratic Assignment Problem (QAP) is a generalization of the following
facility location problem: n distinct facilities from {1, 2, ..., n} must be assigned
to n distinct locations from A. Flow f(i, j) is given for all pairs of facilities i, j
and distance d(ak, al) is given for all pairs of locations ak, al. The solution vector
X contains a single permutation, where xi determines the location assigned to
the facility i. The goal is to minimize the sum of all flows weighted by the
corresponding distances according to the assignment X (Eq. 23).

L = [1, 1, ..., 1] (21)

U = [1, 1, ..., 1] (22)

ĝ(X) =
n∑

i=1

n∑
j=1

flow(i, j)dist(xi, xj) (23)

QAP formulation in the proposed formalism is exceptionally simple and does
not require any penalties. By contrast, formulating the problem as MILP is
complicated by the non-linearity of the problem, and a linearization technique
needs to be employed.

3.2 Proposed solver

The proposed metaheuristic solver addresses the generic problem defined in Sec-
tion 3.1. The user is required to specify the set of nodes A, vectors L, B con-
taining their bounds and the augmented fitness function g(X) = ĝ(X) + p(X).
The solver minimizes g(X) over all possible sequences X ∈ Am and guaran-
tees that the condition on bounds defined in Eq. 8 is satisfied. All remaining

CHAPTER 6. METAHEURISTIC SOLVER FOR PROBLEMS WITH
PERMUTATIVE REPRESENTATION

96

Metaheuristic solver for problems with permutative representation 7

Double Bridge(X, k) generates k distinct random indices between 1 and m. The solution X is
then divided into k+1 segments determined by these indices, and all of these segments are reversed.
Random Double Bridge(X, k) operates similarly to Double Bridge. However, each of the k + 1
segments of X is reversed with a probability of 0.5.
Reinsert(X, k) selects uniformly randomly k distinct nodes from A. All occurrences of these nodes
are removed from X and reinserted in randomly selected positions.
Random Swap(X, k) randomly selects two nodes in X and swaps their positions. This operation
is performed k times.
Random Move(X, k) randomly selects a node in X and moves it to a random location. This
operation is performed k times.
Random Move All(X, k) randomly selects a node a from A. All occurrences of a are randomly
moved in X up to a maximal distance k from their original locations. This operation is performed
k times.

Table 1. Perturbations

problem-specific constraints are hidden from the solver and must be enforced by
the penalty function p(X).

The solver contains four sets of alternative components: metaheuristics (MH),
local search heuristics (LS), perturbations (P) and construction procedures (C).
When solving a specific problem, one component from each of these categories
must be set. The solver also contains a list of local search operators (O), at least
one of which must always be used. The best configuration for a given problem is
automatically identified using the Iterated Racing tool (irace) [12]. The remain-
der of this section provides a brief description of individual components, some
of which were adapted from the literature and are described only briefly.

Metaheuristics are top-level procedures that control the entire optimization
process. Two metaheuristics are currently implemented in the proposed solver:
Iterated Local Search ILS(C, LS, P, O, k) [13] and Variable Neighborhood Search
VNS(C, LS, P, O, kmin, kmax) [15]. Both metaheuristics construct an initial
solution and then alternate local search and perturbation, until the timeout is
reached. The parameter k is a numerical parameter of the perturbation, which
is fixed in the ILS and variable in the VNS.

Local search heuristics control the application of individual local search op-
erators in O to a current solution X, with the aim of reaching a new local
optimum. Five variants of the Variable Neighborhood Descent (VND) heuris-
tic adapted from [7] are implemented in the solver: Basic BVND(X, O), Pipe
PVND(X, O), Cyclic CVND(X, O), Random RVND(X, O) and Random
Pipe RPVND(X, O). All VND variants terminate and return a possibly im-
proved solution X, when none of the operators in O succeeds in improving X.
The only difference is the rule for iterating through O.

Perturbations are intended to randomly modify a current solution X in order
to escape a local optimum. Six perturbations are implemented in the proposed
solver and described in Table 1. All perturbations take a current solution X and
a numerical parameter k as input and return a modified solution regardless of
its fitness. Generally, the value of k determines the intensity of a perturbation.

CHAPTER 6. METAHEURISTIC SOLVER FOR PROBLEMS WITH
PERMUTATIVE REPRESENTATION

97

8 David Woller , Jan Hrazd́ıra, and Miroslav Kulich

Construction procedures are used to create an initial solution. Three con-
structions described in Table 2 are implemented in the proposed solver. All
constructions return a solution X valid w.r.t. Eq. 8.

Local search operators define different neighborhoods of a solution X. When
applying a local search operator, the entire neighborhood is searched, and the
most improving modification of X w.r.t. g(X) is applied. All operators perform
improving moves only and are not allowed to violate the constraint given by
Eq. 8. Some operators take additional parameters which are fixed in the solver.
Thus, multiple variants of some operators are instantiated. The ranges of these
parameters were set empirically and are given in the operator description below.
The 11 operators described in Table 3 are implemented in the solver.

For some of these operators, the corresponding neighborhood is a subspace
of another operator’s neighborhood (e.g. Exchange and Reverse Exchange, Cen-
tered Exchange and Two-opt). The reason for this is that smaller neighborhoods
can be searched faster and still lead to new local optima. On the other hand, a
larger neighborhood may be beneficial when the search stagnates.

4 Results

The proposed solver described in Section 3.2 was implemented in C++. Both
the implementation and the solution files are publicly available at [22]. The
solver was benchmarked against the exact Gurobi Optimizer. The solver was
parallelized using the OpenMP library, and its configuration for each problem
was tuned by the irace package with a budget of 4000 experiments per problem.
Both solvers were allowed to use eight threads. All experiments were carried out
on dedicated machines with Ubuntu 18.04 OS, Intel Core i7-7700 CPU, 32 GB
RAM memory, and 34 GB swap memory.

For each problem, a data set of 10 commonly used test instances of variable
size and difficulty was selected. A different dataset of 20 training instances was
used for automatic configuration of the proposed solver. The tuned configura-
tions for each problem are shown in Table 4. Both solvers were given the same
computing time, which was set empirically according to the size of the instance.
Each instance was solved once by the Gurobi and fifty times by the proposed
solver, as it is stochastic.

The following data are presented for each instance: the best known solution
from the literature (BKS), the computing time budget (time), the lower bound
and the gap value of the solution fitness found by the Gurobi (LB, gap), the

Greedy() repeatedly applies the local search operator Insert(X). The construction terminates,
when ∀ai ∈ A : fi = li.
Random() repeatedly inserts nodes into random locations in X, until ∀ai ∈ A : fi = li.
Random-replicate() first generates a random permutation of all nodes in A. A copy of this per-
mutation is repeatedly appended to itself, until ∀ai ∈ A : fi ≥ li. If fi = ui, ai is removed from
the appended copy.

Table 2. Construction procedures

CHAPTER 6. METAHEURISTIC SOLVER FOR PROBLEMS WITH
PERMUTATIVE REPRESENTATION

98

Metaheuristic solver for problems with permutative representation 9

Insert(X) attempts to insert a node ai ∈ A to a position j ∈ {1, 2, ...,m}. The most improving
combination of i, j w.r.t. g(X) is used. As the operator is used in greedy construction, it internally
extends the penalty function as p(X) = p(X) + M2 ∑n

i=1 max(li − fi, 0).
Remove(X) attempts to remove a node xi ∈ X.
Two-opt(X) attempts to reverse a substring of X given by indices i, j ∈ {1, 2, ...,m}.
Exchange Nodes(X) attempts to exchange all occurrences of nodes ai, aj ∈ A in X.
Exchange First Nodes(X) attempts to exchange first k occurrences of nodes ai, aj ∈ A in X,
where k ∈ {1, 2, ...,max(fi, fj)}.
Exchange(X, p, q) attempts to exchange substrings of fixed lengths p, q in X. Variants: (p, q) ∈
{(1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}.
Reverse Exchange(X, p, q) operates similarly to the Exchange operator, but it also attempts to
reverse one or both substrings before exchanging.
Centered Exchange(X, p) reverts the substring of length 2p+1, starting at position i ∈ {0,m−
p + 1}. Variants: p ∈ {1, 2, 3, 4, 5}.
Move(X, p) attempts to move a substring of X with fixed length p from a position i ∈ {1, 2, ...,m−
p + 1} to a position j ∈ {1, 2, ...,m}. Variants: p ∈ {1, 2, 3, 4, 5}.
Reverse Move(X, p) operates similarly to the Move operator, but it also attempts to reverse the
substring. Variants: p ∈ {2, 3, 4, 5}.
Move all(X, p) attempts to move all occurrences of a node ai ∈ A in X. All occurrences are
shifted by the same distance distance p ∈ {−p, ..., 0, ..., p} from their original positions. Variants:
p ∈ {1, 2, 3, 4, 10}.

Table 3. Local search operators

same values obtained in ten times the computing budget (LB10t, gap10t), the best
gap, the mean gap, and the standard deviation achieved by the proposed solver

(gap∗, gap, stdev). The values of gap are calculated as gap(%) = 100(ĝ(X)
BKS − 1).

BKSs that are known to be optimal are written in bold.

Problem Configuration
CVRP MH: VNS(kmin = 3, kmax = 8); C: Random; LS: RVND; P: Random Dou-

ble Bridge; O: Insert, Remove, Two-opt, Exchange Nodes, Exchange((p, q) ∈
{(1, 1), (1, 2), (2, 3), (2, 4), (3, 3), (3, 4)}), Reverse Exchange((p, q) ∈ {(1, 2)}), Centered
Exchange(p ∈ {1, 2, 3, 4}), Move(p ∈ {5}), Reverse Move(p ∈ {2, 3, 5}), Move All(p ∈
{2, 3, 4})

NPFS MH: ILS(k = 1); C: Random-replicate; LS: BVND; P: Random Swap; O: Exchange Nodes,
Exchange((p, q) ∈ {(1, 1), (2, 2), (2, 4), (3, 4), (4, 4)}). Reverse Exchange((p, q) ∈ {(2, 3)}),
Centered Exchange(p ∈ {2, 4}), Move(p ∈ {1, 2, 5}), Reverse Move(p ∈ {4}), Move All(p ∈
{1, 3, 4})

QAP MH: ILS(k = 6); C: Random; LS: PVND; P: Random Move; O: Two-opt, Exchange
Nodes; Exchange((p, q) ∈ {(1, 1), (2, 2), (2, 3), (2, 4), (3, 4)}), Reverse Exchange((p, q) ∈
{(2, 2), (2, 4), (4, 4)}), Centered Exchange(p ∈ {1, 2, 3, 5}), Move(p ∈ {3}), Reverse
Move(p ∈ {3}), Move All(p ∈ {1, 2, 3}).

Table 4. Tuned configurations

CVRP results are presented in Table 5. The problem was solved in Gurobi
using the Miller-Tucker-Zemlin ILP formulation [16]. Testing instances were se-
lected from CVRPLIB [11]. The proposed solver was able to find the optimum
for the smallest three instances and for most of the instances, both gap∗ and
gap are within 5%. The proposed solver found a valid solution every time. On
the other hand, Gurobi generated a valid solution only for the three smallest
instances and with significantly larger gap. For the remaining seven instances,
Gurobi returned only a lower bound, which did not improve much even in the
longer runs with ten times the computing time.

NPFS results are presented in Table 6. The ILP formulation was adapted
from [1] and the testing instances were selected from the dataset [20]. The BKS

CHAPTER 6. METAHEURISTIC SOLVER FOR PROBLEMS WITH
PERMUTATIVE REPRESENTATION

99

10 David Woller , Jan Hrazd́ıra, and Miroslav Kulich

Gurobi Proposed solver
Instance time[s] BKS LB LB10t gap gap10t gap∗ gap stdev
P-n050-k10 600 696 567 579 2.73% 1.01% 0.00% 0.18% 1.07
A-n65-k09 600 1174 822 831 29.05% 2.47% 0.00% 0.22% 2.03
P-n076-k05 600 627 567 571 13.88% 6.86% 0.00% 0.16% 1.50
X-n148-k46 1800 43448 23072 23705 - - 0.12% 0.51% 89.94
X-n204-k19 1800 19565 14105 14118 - - 0.57% 1.19% 60.48
X-n251-k28 1800 38684 20779 20779 - - 1.04% 1.47% 95.73
X-n351-k40 3600 25896 14061 14061 - - 3.84% 5.02% 174.04
X-n561-k42 3600 42717 25226 25768 - - 2.58% 3.47% 200.30
X-n749-k98 3600 77269 30465 30805 - - 4.93% 6.10% 388.35
X-n1001-k43 3600 72355 29862 30419 - - 7.62% 8.90% 395.64

Table 5. CVRP results

values shown were generated for the Permutation Flowshop Problem (PFS),
which requires the same job order on each machine. These are valid for the NPFS
as well, but may be suboptimal. The proposed solver found a valid solution every
time, and both gap∗ and gap are within 7% for most instances. BKS was found
twice, and in one case, a solution of better quality than PFS BKS was found.
Gurobi found a valid solution for eight instances. For the remaining two, Gurobi
failed to build the problem model due to excessive memory requirements. The
gap and gap10t values found by the Gurobi do not differ significantly from each
other and are several times higher than those of the proposed solver.

Gurobi Proposed solver
Instance time[s] BKS LB LB10t gap gap10t gap∗ gap stdev
VFR20 5 1 600 1192 810 814 6.29% 3.61% 0.00% 0.16% 1.15
VFR20 15 1 600 1936 1409 1437 7.95% 4.86% -0.41% 0.12% 3.83
VFR40 5 1 600 2396 1452 1460 6.59% 6.01% 0.00% 0.00% 0.00
VFR100 20 1 1800 6121 3482 3518 28.41% 27.46% 4.20% 5.28% 29.11
VFR100 20 2 1800 6119 3590 3622 29.14% 27.46% 5.77% 6.81% 25.53
VFR200 20 1 1800 11181 3684 5806 22.81% 22.73% 4.52% 5.52% 62.15
VFR400 40 1 3600 23085 2482 11997 22.57% 22.57% 6.14% 7.40% 165.19
VFR400 60 1 3600 25214 - - - - 5.93% 6.97% 144.22
VFR600 40 1 3600 33337 2555 2555 18.86% 18.86% 4.80% 5.88% 146.23
VFR600 60 1 3600 35450 - - - - 5.83% 6.89% 172.28

Table 6. NPFS results

QAP results are presented in Table 7. The Xia Yuan linearization [23] was
used in the MILP formulation and the testing instances were selected from
QAPLIB [3]. For this problem, both Gurobi and the proposed solver found a
valid solution every time. For this reason and because of space limitations, the
values of LB and LB10t are omitted. The proposed solver found the BKS for
six instances. Gurobi performed significantly worse than the proposed solver in
both standard and long runs, although the values of gap10t improved noticeably
compared to gap.

5 Conclusions

In this paper, a unifying formalism for combinatorial optimization problems with
permutative representation is proposed, together with a metaheuristic solver
capable of addressing this class of problems. The goal is to provide a versatile
solver that requires the user only to model the problem, similarly to various

CHAPTER 6. METAHEURISTIC SOLVER FOR PROBLEMS WITH
PERMUTATIVE REPRESENTATION

100

Metaheuristic solver for problems with permutative representation 11

Gurobi Proposed solver
Instance time[s] BKS gap gap10t gap∗ gap stdev
tai20b 600 122455319 0.45% 0.45% 0.00% 0.00% 0.00
tai25a 600 1167256 4.88% 3.26% 0.00% 0.37% 2764.26
tai30b 600 637117113 4.53% 4.47% 0.00% 0.00% 0.00
tai40a 1800 3139370 5.17% 4.28% 0.31% 1.07% 9752.18
tai50b 1800 458821517 7.67% 4.30% 0.00% 0.09% 726353.31
tai60a 1800 7205962 5.64% 5.53% 1.07% 1.80% 18626.86
tai80a 3600 13499184 6.39% 5.56% 1.36% 1.82% 33320.47
tai80b 3600 818415043 12.94% 7.72% 0.00% 1.06% 5389291.60
tai100a 3600 21052466 11.75% 10.11% 1.36% 1.77% 52545.36
tai100b 3600 1185996137 19.98% 10.20% 0.00% 0.87% 11497905.21

Table 7. QAP results

MILP solvers, but offers better scalability, otherwise typical for problem-specific
metaheuristic solvers.

Three different NP-hard problems (CVRP, NPFS, and QAP) are formulated
in the proposed formalism. The proposed solver is automatically configured sep-
arately for each problem and benchmarked against the Gurobi Optimizer. The
experiments show that the proposed solver consistently reaches solutions of sig-
nificantly better quality than Gurobi, given a fixed time limit. Moreover, it is
capable of finding good quality solutions to such problems, for which Gurobi
either finds no solution at all in the given time or fails to build the problem
model due to memory limitations.

In future work, other metaheuristics and low-level components will be imple-
mented to extend the solver capabilities. The solver will also be adapted to solve
richer problems in terms of number of constraints, as it relies on transforming
these into penalty functions. Finally, the solver will be compared with problem-
specific metaheuristic algorithms and further improved toward offering similar
scalability and solution quality.

Acknowledgements

This work has been supported by the European Regional Development Fund
under the project Robotics for Industry 4.0 (reg. no. CZ.02.1.01/0.0/0.0/15
003/0000470). The work of David Woller has been also supported by the Grant
Agency of the Czech Technical University in Prague, grant No. SGS21/185/OH
K3/3T/37 and by the Czech Science Foundation (GACR) under Grant Agree-
ment 19-26143X. Computational resources were supplied by the project“e-Infra-
struktura CZ” (e-INFRA CZ LM2018140) supported by the Ministry of Educa-
tion, Youth and Sports of the Czech Republic.

References

1. Benavides, A.J., Ritt, M.: Fast heuristics for minimizing the makespan in non-
permutation flow shops. Computers & Operations Research 100, 230–243 (2018)

2. Blot, A., Hoos, H.H., Jourdan, L., Kessaci-Marmion, M.É., Trautmann, H.: MO-
ParamILS: A multi-objective automatic algorithm configuration framework. In:
Learning and Intelligent Optimization, pp. 32–47. Springer Int. Pub., Cham (2016)

CHAPTER 6. METAHEURISTIC SOLVER FOR PROBLEMS WITH
PERMUTATIVE REPRESENTATION

101

12 David Woller , Jan Hrazd́ıra, and Miroslav Kulich

3. Burkard, R., Çela, E., Karisch, S., Rendl, F.: QAPLIB (2012). URL https://coral.
ise.lehigh.edu/data-sets/qaplib/

4. De Beukelaer, H., Davenport, G.F., De Meyer, G., Fack, V.: JAMES: An object-
oriented Java framework for discrete optimization using local search metaheuristics.
Software - Practice and Experience 47(6), 921–938 (2017)

5. Deshwal, A., Belakaria, S., Doppa, J.R., Kim, D.H.: Bayesian optimization over
permutation spaces. Proceedings of the AAAI Conf 36(6), 6515–6523 (2022)

6. Dreo, J., Liefooghe, A., Verel, S., Schoenauer, M., Merelo, J.J., Quemy, A., Bouvier,
B., Gmys, J.: Paradiseo: From a modular framework for evolutionary computation
to the automated design of metaheuristics: 22 years of Paradiseo. In: GECCO 2021
Companion, pp. 1522–1530. Association for Computing Machinery, Inc (2021)

7. Duarte, A., Mladenović, N., Sánchez-Oro, J., Todosijević, R.: Variable neighbor-
hood descent. In: Handbook of Heuristics, vol. 1-2, pp. 341–367. Springer Int. Pub.
(2018)

8. Hadka, D., Reed, P.M., Simpson, T.W.: Diagnostic assessment of the borg MOEA
for many-objective product family design problems. In: 2012 IEEE Congress on
Evolutionary Computation, CEC 2012 (2012)

9. Helsgaun, K.: An Extension of the LKH TSP Solver for Constrained TSP and
VRP. Tech. rep., Roskilde University (2017)

10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Learning and Intelligent Optimization, pp.
507–523. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

11. Lima, I.: CVRPLIB (2014). URL http://vrp.galgos.inf.puc-rio.br/
12. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.:

The irace package: Iterated racing for automatic algorithm configuration. Opera-
tions Research Perspectives 3, 43–58 (2016)

13. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: Framework and
applications. In: Handbook of Metaheuristics, pp. 129–168. Springer Int. Pub.,
Cham (2019)

14. Mehdi, M.: Parallel Hybrid Optimization Methods for Permutation Based Prob-
lems. Ph.D. thesis, Université des Sciences et Technologie de Lille (2011)

15. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers and Oper-
ations Research 24(11), 1097–1100 (1997)

16. Moghadam, B.F., Sadjadi, S.J., Seyedhosseini, S.M.: Comparing mathematical and
heuristic methods for robust VRP. IJRRAS 2(2), 108–116 (2010)

17. Parejo, J.A., Ruiz-Cortés, A., Lozano, S., Fernandez, P.: Metaheuristic optimiza-
tion frameworks: A survey and benchmarking. Soft Comput. 16(3), 527–561 (2012)

18. Scott, E.O., Luke, S.: ECJ at 20: Toward a general metaheuristics toolkit. In:
GECCO 2019 Companion, pp. 1391–1398. ACM (2019)

19. Stutzle, T., López-Ibáñez, M.: Automated design of metaheuristic algorithms. In:
Handbook of Metaheuristics, pp. 541–579. Springer Int. Pub., Cham (2019)

20. Vallada, E., Ruiz, R., Framinan, J.M.: New hard benchmark for flowshop schedul-
ing problems minimising makespan. European Journal of Operational Research
240(3), 666–677 (2015)

21. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework
for multi-attribute vehicle routing problems. European Journal of Operational
Research 234(3), 658–673 (2014)

22. Woller, D.: Permutator github repository (2022). URL https://github.com/
wolledav/permutator

23. Xia, Y., Yuan, Y.X.: A new linearization method for quadratic assignment prob-
lems. Optimization Methods and Software 21(5), 805–818 (2006)

CHAPTER 6. METAHEURISTIC SOLVER FOR PROBLEMS WITH
PERMUTATIVE REPRESENTATION

102

Chapter 7

The Hamiltonian Cycle and Travelling
Salesperson problems with
traversal-dependent edge deletion

In this chapter, we present the fifth core publication [c5] - The Hamiltonian Cycle and
Travelling Salesperson problems with traversal-dependent edge deletion. This research
employs the solver developed in the previous core publication [c4] and is further expanded
in [c6] and [r11].

[c5] Carmesin, S., Woller, D., Parker, D., Kulich, M., Mansouri, M., “The Hamilto-
nian Cycle and Travelling Salesperson problems with traversal-dependent edge
deletion”, Journal of Computational Science, vol. 74, p. 102 156, 2023, issn:
1877-7503. doi: 10.1016/j.jocs.2023.102156, 20% contribution, IF 3.3
(Q2 in Computer Science, Theory & Methods), citations: 0 in Web
of Science, 1 in Scopus, 1 in Google Scholar.

This research is motivated by a practical robotic application [97]. In this application,
an autonomous drill rig is tasked with drilling a dense pattern of blast holes in an open-
pit mine. Drilling each blast hole generates a pile of excess material, which represents
an obstacle to future movement of the drill rig. Based on this motivation, we proposed
the concept of self-deleting graphs, where visiting a vertex results in the deletion of a
predefined set of edges. Then, we formulated the Travelling Salesperson Problem on
Self-Deleting graphs (TSP-SD), the Hamiltonian Cycle Problem on Self-Deleting graphs
(HCP-SD) and their relaxed variants.

The contributions in this paper are both theoretical and practical. We present three
proofs addressing various properties of paths on self-deleting graphs. Then we propose an
exact solver for TSP-SD and HCP-SD. It implements a backward depth-first search in a
given self-deleting graph, which builds a valid solution tour from last node to first. The
solver is exceptionally efficient when finding a feasible initial solution. We also propose
a metaheuristic solver based on the generic metaheuristic solver [c4], which, on the other
hand, is efficient in the optimization settings, but does not guarantee solution feasibility
or optimality. Finally, by linking both solvers together, we obtain a hybrid approach
combining advantages of both the exact and heuristic approaches.

The experimental results document the performance of both solvers in terms of scal-
ability and solution quality. The best-performing setup combines both approaches: the
exact solver, configured to terminate when finding the first feasible solution, reliably con-
structs an initial solution, while the metaheuristic solver is more suitable for finding a
locally optimal solution of good quality. Thus, small instances with up to 30 nodes can
be solved to optimality, and near-optimal solutions can be found for up to 1000 nodes.
Then, we carry out a statistical analysis of the Hamiltonicity bound w.r.t. the average
vertex degree of a HCP-SD problem instance and compare it with the standard HCP.
Finally, we evaluate the ability of the generic metaheuristic solver [c4] to find a feasible
solution on a large dataset of artificial instances without the exact construction.

103

https://doi.org/10.1016/j.jocs.2023.102156

Journal of Computational Science 74 (2023) 102156

Available online 17 October 2023
1877-7503/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

The Hamiltonian Cycle and Travelling Salesperson problems with
traversal-dependent edge deletion
Sarah Carmesin a, David Woller b,c, David Parker d, Miroslav Kulich b, Masoumeh Mansouri a,∗

a School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
b Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 6, 160 00, Czech
Republic
c Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo náměstí13, Prague 2, 121 35, Czech Republic
d Department of Computer Science University of Oxford, Parks Road, Oxford, OX1 3QD, United Kingdom

A R T I C L E I N F O

Keywords:
Travelling Salesperson problem
Coverage planning
Metaheuristics
Combinatorial optimization

A B S T R A C T

Variants of the well-known Hamiltonian Cycle and Travelling Salesperson problems have been studied for
decades. Existing formulations assume either a static graph or a temporal graph in which edges are available
based on some function of time. In this paper, we introduce a new variant of these problems inspired
by applications such as open-pit mining, harvesting and painting, in which some edges become deleted or
untraversable depending on the vertices that are visited. We formally define these problems and provide
both a theoretical and experimental analysis of them in comparison with the conventional versions. We also
propose two solvers, based on an exact backward search and a meta-heuristic solver, and provide an extensive
experimental evaluation.

1. Introduction

Finding a closed loop on a graph where every vertex is visited ex-
actly once is a Hamiltonian Cycle Problem (HCP), and its corresponding
optimization problem in a weighted graph is a Travelling Salesperson
Problem (TSP). Variants of the HCP and the TSP have been studied for
decades. However, the wealth of research on this topic does not cover
problems where the availability of an edge in a graph depends on the
vertices already visited. This specific type of dynamic graph is relevant
to many real-world applications, such as open-pit mining, harvesting
and painting.

For instance, consider the mining inspired example shown in Fig. 1,
where the graph depicts a representation of a mining field and each
vertex is a place to be drilled by a drilling machine. The problem is to
find a route such that each vertex is visited and drilled exactly once,
i.e., an instance of a HCP/TSP. However, in this problem, drilling at a
vertex creates a pile of rubble, which not only makes traversing that
vertex again impossible but also affects the availability of some edges
around it. For example, as depicted in Fig. 1(a), when vertex 𝐶 is
drilled, indicated by a red circle, the rubble obstructs three edges, 𝐵𝐷,
𝐶𝐷 and 𝐷𝐴, which are all deleted, whereas a different traversal only
results in the removal of edge 𝐷𝐴, as shown in Fig. 1(b).

To model a graph that changes due to the path of already visited
vertices, as exemplified in the scenario above, we introduce a new class

∗ Corresponding author.
E-mail addresses: sxc1431@student.bham.ac.uk (S. Carmesin), wolledav@cvut.cz (D. Woller), david.parker@cs.ox.ac.uk (D. Parker), kulich@cvut.cz

(M. Kulich), m.mansouri@bham.ac.uk (M. Mansouri).

of graphs, called Self-Deleting (SD). Using this class, we formally define
two new problem variants: the Hamiltonian Cycle Problem with Self-
Deleting graphs (HCP-SD), and the Travelling Salesperson Problem with
Self-Deleting graphs (TSP-SD). We then compare, both theoretically and
experimentally, HCP-SD and TSP-SD with the conventional versions. In
particular, we identify how a self-deleting graph compares to a standard
graph in terms of shortest paths, and determine where HCP and HCP-SD
are equivalent. We also statistically analyse, using the graph’s average
vertex degree, the threshold point near which the most expensive
instances of HCP and HCP-SD are located. Finally, we propose two
solvers, based on an exact backward search and a meta-heuristic solver.
The performance of each is extensively evaluated through experiments
with a dataset based on standard TSPLIB instances as well as randomly
generated datasets catering for the specificity of these new variants.

The paper is structured as follows. Section 2 gives an overview
of related works. In Section 3, we formally define HCP-SD and TSP-
SD followed by formal proofs of properties of self-deleting graphs in
Section 4. We present exact and heuristic solvers for HCP-SD and TSP-
SD in Section 5. A statistical analysis of HCP-SD is given in Section 6. In
Section 7, we evaluate the proposed solvers. We give our conclusions
in the final section, Section 8.

https://doi.org/10.1016/j.jocs.2023.102156
Received 27 March 2023; Received in revised form 27 September 2023; Accepted 8 October 2023

CHAPTER 7. THE HAMILTONIAN CYCLE AND TRAVELLING SALESPERSON
PROBLEMS WITH TRAVERSAL-DEPENDENT EDGE DELETION

104

Journal of Computational Science 74 (2023) 102156

2

S. Carmesin et al.

Fig. 1. Representation of a mining example, where due to different traversals, indicated
with thicker edges, in (a) and (b) different edges are deleted.

2. Related work

There is a large body of research on the HCP, the TSP and their
variants. As mentioned, this paper focuses on a particular type of HCP
and TSP where the edges become deleted or untraversable depending
on the vertices visited. None of the existing variants of these problems
with dynamic graphs has this property. In a TSP on temporal networks,
an edge’s weight and/or availability changes with respect to some
notion of time [1,2], and the unavailable edges can reappear again,
as opposed to HCP-SD where the deleted edges are never re-enabled.
The other difference is that the weight or availability of an edge in a
temporal network changes with time and not due to the way the graph
is traversed.

The Covering Canadian Traveller Problem (CCTP) [3] is to find the
shortest tour visiting all vertices where the availability of an edge is
not known in advance. The traveller only discovers whether an edge is
available once reaching one of its end vertices. The availability of an
edge is set in advance and not dependent on the traversal.

The Sequential Ordering Problem (SOP), sometimes known as prece-
dence constraint TSP [4], is the problem of finding a minimal cost
tour through a graph subject to certain precedence constraints [5].
These constraints are given as a separate acyclic-directed graph. In the
SOP, the precedence relation is solely between vertices, however, in
our problem we have precedence relations between vertices and edges.
Therefore, SOP is a special case of our problem, and we prove this
formally in Lemma 4.

The Minimum Latency Problem (MLP) [6,7] is a variant of the TSP
where the cost of visiting a node depends on the path that a traveller
takes. Given a weighted graph and a path, the latency of a vertex 𝑣
on that path is defined as the distance travelled on that path until
arriving at 𝑣 for the first time. The goal of the MLP is to find a tour
over all vertices such that the total latencies are minimal. Similarly,
in our problem the availability of an edge depends on the path taken.
However, in a MLP, the graph never changes and the latencies are the
result of a simple sum.

On the HCP, some theoretical analysis focuses on investigating
conditions, e.g., vertex degree [8,9], under which a graph contains
a Hamiltonian cycle. For instance, Pósa [10] and Komlós and Sze-
merédi [11] proved that there is a sharp threshold for Hamiltonicity in
random graphs as the edge density increases. An intuitive approach to
finding a Hamilton cycle is to use a depth-first-search (DFS). Rubin [12]
introduced some rules to prune the search tree. His rules do not im-
prove the worst-case computation time 𝑂(𝑛!), where 𝑛 is the number of
vertices, however statistical analysis has shown that using such criteria
improves the average computation time [13,14].

In terms of applications of TSP in automated planning, different
variants have been used in coverage route planning [15], e.g., for an au-
tonomous lawnmower [16], or for autonomous drilling of a PCB [17].
Those most relevant to this paper are coverage planning problems
whose environments change due to the coverage actions by agents,
e.g., robots, that operate within them. The open-pit mining scenario
described earlier is an example of such a coverage planning problem for

which a specialized solver for the mining case is proposed by [18]. Au-
tonomous harvesting is another instance where heavy vehicles should
not pass through the areas already harvested to avoid soil compaction.
The harvested areas also limit the mobility of harvesting machines,
hence affecting the reachability among the nodes representing areas
to be harvested. Ullrich, Hertzberg, and Stiene [19] formulate this
application as an optimization problem for which a specialized solver is
also proposed. In both cases described above, the authors did not study
the theoretical underpinning of the problem, nor provide a general
solution that can easily be employed for other instances of problems
with traversal-dependent edge deletion.

3. Problem statement

In this section, we formally define self-deleting graphs and introduce
the corresponding notions of walks and paths. We then proceed to give
a formal definition of the HCP-SD and the TSP-SD problems.

Definition 1. A self-deleting graph 𝑆 is a tuple 𝑆 = (𝐺, 𝑓) where
𝐺 = (𝑉 ,𝐸) is a simple, undirected graph and 𝑓 ∶ 𝑉 → 2𝐸 . The function
𝑓 specifies for every vertex 𝑣 ∈ 𝑉 which edges 𝑓 (𝑣) are deleted from 𝐸
if the vertex 𝑣 is processed. We refer to 𝑓 as the delete-function.

If a vertex 𝑣 is processed, we delete edges 𝑓 (𝑣) from 𝐺. For a self-
deleting graph 𝑆 and set 𝑋 ⊂ 𝑉 of vertices, the residual graph 𝐺𝑋 of 𝑆
after processing 𝑋 is defined as:

𝐺𝑋 = 𝐺 ⧵
⋃

𝑣∈𝑋
𝑓 (𝑣).

We call a simple path 𝑝 = (𝑣1,… , 𝑣𝑥) in a self-deleting graph 𝑓 -
conforming if for every 1 ≤ 𝑖 < 𝑥 the edge 𝑒𝑖 = {𝑣𝑖, 𝑣𝑖+1} is in the residual
graph 𝐺{𝑣1 ,…,𝑣𝑖}. An 𝑓 -conforming simple path 𝑝 traverses the graph 𝐺
while processing every vertex on 𝑝 when it is visited.

In contrast to a path, vertices on a walk can be visited more than
once. For a walk on a self-deleting graph, a vertex is processed when
it is visited for the last time. Formally, we call a walk 𝑤 = (𝑣1,… , 𝑣𝑥)
𝑓 -conforming if for every 1 ≤ 𝑖 < 𝑥 the edge 𝑒𝑖 = {𝑣𝑖, 𝑣𝑖+1} is in the
residual graph 𝐺{𝑣1 ,…,𝑣𝑖}⧵{𝑣𝑖+1 ,…,𝑣𝑥}.

Following standard terminology we call a sequence of vertices 𝑐 =
(𝑣1,… , 𝑣𝑥, 𝑣1) an 𝑓 -conforming cycle if (𝑣1,… , 𝑣𝑥) is an 𝑓 - conforming
path and the edge {𝑣𝑥, 𝑣1} exists in the residual graph 𝐺𝑐 . Then, a
Hamiltonian cycle of self-deleting graph 𝑆 is an 𝑓 -conforming cycle that
contains all vertices of 𝑆 exactly once.

Problem 1. Given a self-deleting graph 𝑆 = (𝐺, 𝑓), the Hamiltonian
Cycle Problem on Self-Deleting graphs (HCP-SD) is to find a Hamiltonian
cycle on 𝑆.

Problem 2. Given a self-deleting graph 𝑆 = (𝐺, 𝑓), the weak Hamilto-
nian Cycle Problem on Self-Deleting graphs (weak HCP-SD) is to find an
(𝑓 -conforming) closed walk on 𝑆 that contains every vertex at least
once.

Observation 1. Every Hamiltonian cycle of 𝑆 is a Hamiltonian cycle of
𝐺.

This implies that the HCP-SD is at least as hard as finding a Hamil-
tonian path.

Using a weighted graph as the underlying graph of a self-deleting
graph we can define optimization problems on self-deleting graphs as
follows.

Problem 3. Given a self-deleting graph 𝑆 = (𝐺, 𝑓), where 𝐺 is a
weighted graph, the Travelling Salesperson Problem on self-deleting graphs
(TSP-SD) is to find a shortest Hamiltonian cycle on 𝑆.

Problem 4. Given a self-deleting graph 𝑆 = (𝐺, 𝑓), the weak Travelling
Salesperson Problem on self-deleting graphs (weak TSP-SD) is to find a
shortest (𝑓 -conforming) closed walk on 𝑆 that contains every vertex
at least once.

CHAPTER 7. THE HAMILTONIAN CYCLE AND TRAVELLING SALESPERSON
PROBLEMS WITH TRAVERSAL-DEPENDENT EDGE DELETION

105

Journal of Computational Science 74 (2023) 102156

3

S. Carmesin et al.

Fig. 2. Illustrations for the proof of Lemma 2: If the path 𝑤 is shorter than the path
�̂�𝑖, then 𝑝 was not a shortest path.

4. Properties of self-deleting graphs

In this section, we provide some formal analysis of self-deleting
graphs, in comparison to static graphs. First, we analyse path segments
in self-deleting graphs.

Lemma 1. Let 𝑆 = (𝐺, 𝑓) be a self-deleting graph and 𝑝 = (𝑣1,… , 𝑣𝑥) be
an 𝑓 -conforming path of 𝑆. For every 1 ≤ 𝑖 < 𝑗 ≤ 𝑥 it holds that the path
segment 𝑝𝑖,𝑗 = (𝑣𝑖,… , 𝑣𝑗) is an 𝑓 -conforming path of 𝑆𝑖,𝑗 = (𝐺′, 𝑓) where
𝐺′ is the induced subgraph of 𝐺 on the vertices (𝑣𝑖,… , 𝑣𝑗).

Proof. Let 𝑝 = (𝑣1,… , 𝑣𝑥) be an 𝑓 -conforming path of 𝑆 and let
1 ≤ 𝑖 < 𝑗 ≤ 𝑥. By definition, the path segment 𝑝𝑖,𝑗 = (𝑣𝑖,… , 𝑣𝑗) is
an 𝑓 -conforming path of 𝑆𝑖,𝑗 = (𝐺′, 𝑓) if for every 𝑖 ≤ 𝑘 < 𝑗 it holds
that the edge 𝑒𝑘 = {𝑣𝑘, 𝑣𝑘+1} is in the residual graph 𝐺′

{𝑣𝑖 ,…,𝑣𝑘}
. We now

show that, for every 𝑖 ≤ 𝑘 < 𝑗, the edge 𝑒𝑘 = {𝑣𝑘, 𝑣𝑘+1} is in the residual
graph 𝐺′

{𝑣𝑖 ,…,𝑣𝑘}
.

Assume for a contradiction there is a 𝑘 with 𝑖 ≤ 𝑘 < 𝑗 where
𝑒𝑘 ∉ 𝐺′

{𝑣𝑖 ,…,𝑣𝑘}
. There are two possible reasons for this.

1. 𝑒𝑘 ∉ 𝐸(𝐺′): Since 𝑒𝑘 is in 𝐸(𝐺), 𝐺′ cannot be an induced
subgraph of 𝐺 and we have a contradiction.

2. 𝑒𝑘 gets deleted by some 𝑓 (𝑣𝑦), 𝑖 ≤ 𝑦 ≤ 𝑘: If 𝑒𝑘 ∈ ∪𝑖≤𝑦≤𝑘𝑓 (𝑣𝑦)
then 𝑒𝑘 ∈ ∪1≤𝑦≤𝑘𝑓 (𝑣𝑦) and therefore 𝑒𝑘 ∉ 𝐺{𝑣1 ,…,𝑣𝑘}. Since 𝑒𝑘 ∉
𝐺{𝑝1 ,…,𝑝𝑘} the path 𝑝 is not 𝑓 -conforming and we again arrive at
a contradiction.

Since both cases yield a contradiction, the lemma holds. □

Let 𝑝 = (𝑣1,… , 𝑣𝑥) be an 𝑓 -conforming path from the vertex 𝑣1 to
the vertex 𝑣𝑥 and let |𝑝| denote the length of the path 𝑝. We call 𝑝 a
shortest 𝑓 -conforming path from 𝑣1 to 𝑣𝑥 if for every other 𝑓 -conforming
path �̂� = (𝑣1,… , 𝑣𝑥) from 𝑣1 to 𝑣𝑥 it holds that |𝑝| ≤ |�̂�|.

Lemma 2. Let 𝑝 = (𝑣1,… , 𝑣𝑘) be a shortest 𝑓 -conforming path from 𝑣1 to
𝑣𝑘 on a self-deleting graph 𝑆 = (𝐺, 𝑓). The following two statements hold:

1. For every 1 < 𝑖 < 𝑘 it holds that the path 𝑝𝑖 = (𝑣1,… , 𝑣𝑖) is not
necessarily a shortest 𝑓 -conforming path in 𝑆.

2. It further holds that the path �̂�𝑖 = (𝑣𝑖,… , 𝑣𝑘) is a shortest 𝑓 -
conforming path from 𝑣𝑖 to 𝑣𝑘 in the self-deleting graph 𝑆′ =
(𝐺{𝑣1 ,…,𝑣𝑖}, 𝑓).

Proof. Let 𝑝 = (𝑣1,… , 𝑣𝑘) be a shortest 𝑓 -conforming path from 𝑣1 to
𝑣𝑘 on a self-deleting graph 𝑆 = (𝐺, 𝑓). For any 1 < 𝑖 < 𝑘 we denote the
path segment of 𝑝 from 𝑣1 to 𝑣𝑖 by 𝑝𝑖 and the path segment from 𝑣𝑖 to 𝑣𝑘
by �̂�𝑖. Due to Lemma 1, the path segments 𝑝𝑖 and �̂�𝑖 are 𝑓 -conforming.
We now prove the two statements separately.

1. A shortest 𝑓 -conforming path from 𝑣1 to 𝑣𝑖 could contain a
vertex 𝑣𝑗 for which 𝑓 (𝑣𝑗) deletes an edge needed in the second
part �̂�𝑖 of the 𝑓 -conforming path 𝑝. So, 𝑝𝑖 is not necessarily a
shortest 𝑓 -conforming path from 𝑣1 to 𝑣𝑖.

2. We now prove that the path �̂�𝑖 = (𝑣𝑖,… , 𝑣𝑘) is a shortest 𝑓 -
conforming path from 𝑣𝑖 to 𝑣𝑘 in the self-deleting graph 𝑆′ =
(𝐺{𝑣1 ,…,𝑣𝑖}, 𝑓). For a contradiction assume there is a vertex 𝑣𝑖,
with 1 < 𝑖 < 𝑘, such that there is a 𝑓 -conforming path 𝑤 from
𝑣𝑖 to 𝑣𝑘 in 𝑆′ that is shorter than �̂�𝑖. We consider the following
two cases.

(a) The paths 𝑤 and 𝑝𝑖 do not share a vertex, as depicted in
Fig. 2(a). If this is the case, then the path from 𝑣1 to 𝑣𝑘
that consists of the path 𝑝𝑖 and the path 𝑤 is shorter than
the path 𝑝. This is a contradiction.

(b) The paths 𝑤 and 𝑝𝑖 share a vertex 𝑣𝑥, as depicted in
Fig. 2(b). Since by assumption 𝑤 is 𝑓 -conforming and
|𝑤| < |�̂�𝑖|, the walk from 𝑣1 to 𝑣𝑘 consisting of 𝑝𝑖 and
𝑤 is shorter than 𝑝. We can create an even shorter simple
path form 𝑣1 to 𝑣𝑘 by omitting the circle that is created
by going from 𝑣𝑥 to 𝑣𝑖 via 𝑝 and then returning to 𝑣𝑥 via
𝑤. This is a contradiction to the assumption that 𝑝 is a
shortest path from 𝑣1 to 𝑣𝑘. □

Lemma 2 indicates the inherent difference between static and self-
deleting graphs. In static graphs, every segment of a shortest path is a
shortest path. This fact is exploited by different algorithms, often based
on dynamic programming, for path finding in static graphs, e.g. Di-
jkstra’s algorithm [20]. As a consequence, these types of algorithms
cannot easily be applied to self-deleting graphs.

Lemma 3. Let 𝑆 = (𝐺, 𝑓) be a self-deleting graph, where for every
vertex 𝑣 ∈ 𝑉 (𝐺), 𝑓 (𝑣) deletes only edges that are incident to 𝑣, then
the Hamiltonian path problem on self-deleting graphs is equivalent to the
Hamiltonian path problem on directed graphs.

Proof. We construct a corresponding directed graph 𝐷 = (𝑉 ,𝐴), to a
self-deleting graph 𝑆 = (𝐺, 𝑓), where 𝑓 (𝑣) deletes only edges incident
to 𝑣, as follows.

𝑉 (𝐷) = 𝑉 (𝐺),

𝐴(𝐷) = {(𝑣,𝑤) ∣ {𝑣,𝑤} ∈ 𝐸(𝐺) ∧ {𝑣,𝑤} ∉ 𝑓 (𝑣)}

(Here (𝑣,𝑤) describes the directed arc from 𝑣 to 𝑤, while {𝑣,𝑤}
describes the undirected edge between 𝑣 and 𝑤.)

Another way to explain this construction is as follows. We make
𝐺 a directed graph in which each edge is replaced by two arcs in
opposite directions. For every vertex 𝑣 we then delete all outgoing arcs
corresponding to an edge in 𝑓 (𝑣).

We now prove that a path 𝑝 is 𝑓 -conforming in 𝑆 if and only if 𝑝 is
a path in 𝐷.

⇒: If the path 𝑝 = (𝑣1,… , 𝑣𝑘) is 𝑓 -conforming, it holds by definition
that for every 1 ≤ 𝑖 < 𝑘 the edge {𝑣𝑖, 𝑣𝑖+1} is in the residual graph
𝐺{𝑣1 ,…,𝑣𝑖}. Since {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐺{𝑣1 ,…,𝑣𝑖} it holds that {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐸(𝐺).
Also since {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐺{𝑣1 ,…,𝑣𝑖} it holds that the edge {𝑣𝑖, 𝑣𝑖+1} ∉ 𝑓 (𝑣𝑥)
with 1 ≤ 𝑥 ≤ 𝑖, so the edge {𝑣𝑖, 𝑣𝑖+1} is in particular not in 𝑓 (𝑣𝑖).
Therefore the arc (𝑣𝑖, 𝑣𝑖+1) is in 𝐴(𝐷).

⇐: Now, let 𝑝 = (𝑣1,… , 𝑣𝑘) be a simple path in 𝐷. So, for every
1 ≤ 𝑖 < 𝑘 the arc (𝑣𝑖, 𝑣𝑖+1) is in 𝐴(𝐷). For every arc 𝑎 = (𝑣,𝑤) ∈ 𝐴(𝐷) it
holds that the edge 𝑒 = {𝑣,𝑤} is in 𝐸(𝐺) and 𝑒 ∉ 𝑓 (𝑣). Since (𝑣𝑖, 𝑣𝑖+1) is
in 𝐴(𝐷), it follows that {𝑣𝑖, 𝑣𝑖+1} ∉ 𝑓 (𝑣𝑖). Since no other vertex 𝑣𝑛 with
𝑛 < 𝑖 is incident to 𝑒 it follows that {𝑣𝑖, 𝑣𝑖+1} ∉ 𝑓 (𝑣𝑚) for every 𝑚 ≤ 𝑖.
So {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐺𝑣1 ,…,𝑣𝑖 . Therefore 𝑝 is 𝑓 -conforming in 𝑆.

Every path through 𝐷 is an 𝑓 -conforming path through 𝑆 and vice-
versa. So the Hamiltonian path problem on 𝑆 is equivalent to the
Hamiltonian path problem on 𝐷. □

A sequential ordering problem (SOP) is defined as a graph 𝐺 = (𝑉 ,𝐸)
accompanied by a precedence graph 𝑃 . The precedence graph 𝑃 is a
directed graph defined on the same set of vertices 𝑉 . It represents the
precedence relation between the vertices of 𝐺. An edge from 𝑣𝑖 to 𝑣𝑗 in
𝑃 implies that 𝑣𝑖 must precede 𝑣𝑗 in any path through 𝐺. The problem
is to find a Hamiltonian path in 𝐺 that does not violate the precedence
relation given by 𝑃 .

CHAPTER 7. THE HAMILTONIAN CYCLE AND TRAVELLING SALESPERSON
PROBLEMS WITH TRAVERSAL-DEPENDENT EDGE DELETION

106

Journal of Computational Science 74 (2023) 102156

4

S. Carmesin et al.

Lemma 4. For every sequential ordering problem 𝑆𝑂𝑃 there is a corre-
sponding self-deleting graph 𝑆𝑆𝑂𝑃 such that a path 𝑝 is a solution to 𝑆𝑂𝑃
if and only if 𝑝 is a Hamiltonian path of 𝑆𝑆𝑂𝑃 .

Proof. Let a SOP be given by the graph 𝐻 and the precedence graph
𝑃 . Let 𝑝𝑟𝑒(𝑣) ⊆ 𝑉 (𝐻) be the set of vertices that precede 𝑣 in 𝑃 ,
formally 𝑝𝑟𝑒(𝑣) = {𝑤 ∣ (𝑤, 𝑣) ∈ 𝐴(𝑃)}. We construct the corresponding
self-deleting graph 𝑆𝑆𝑂𝑃 = (𝐺, 𝑓) as follows.

𝐺 = 𝐻,

𝑓 (𝑣) =
⋃

𝑤∈𝑝𝑟𝑒(𝑣)
{𝑒 ∈ 𝐸(𝐺) ∣ 𝑒 incident to 𝑤}

⇒: Let 𝑝 = (𝑣1,… , 𝑣𝑘) be a path in 𝐻 that satisfies the precedence
relations given in 𝑃 . So, for every 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 the vertices 𝑣𝑗 and 𝑣𝑗+1
are not required to precede 𝑣𝑖. Thus, the edges (𝑣𝑗 , 𝑣𝑖) and (𝑣𝑗+1, 𝑣𝑖) are
not in 𝑃 and 𝑣𝑗 , 𝑣𝑗+1 ∉ 𝑝𝑟𝑒(𝑣𝑖). So by construction of 𝑓 the edge (𝑣𝑗 , 𝑣𝑗+1)
does not get deleted by any 𝑓 (𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑗. This implies that the edge
(𝑣𝑗 , 𝑣𝑗+1) is in the residual graph 𝐺{𝑣1 ,…,𝑣𝑗}. Thus, 𝑝 is 𝑓 -conforming in
𝑆𝑆𝑂𝑃 .

⇐: If the path 𝑝 = (𝑣1,… , 𝑣𝑘) is 𝑓 -conforming in 𝑆𝑆𝑂𝑃 it holds per
definition that for every 1 ≤ 𝑖 < 𝑘 the edge (𝑣𝑖, 𝑣𝑖+1) is in the residual
graph 𝐺{𝑣1 ,…,𝑣𝑖}. Thus, it holds that the edge (𝑣𝑖, 𝑣𝑖+1) has not been
deleted by any vertex 𝑣𝑥 with 1 ≤ 𝑥 ≤ 𝑖. It follows that 𝑣𝑖 and 𝑣𝑖+1 are
not in 𝑝𝑟𝑒(𝑣𝑥) with 1 ≤ 𝑥 ≤ 𝑖. Thus, 𝑣𝑖 and 𝑣𝑖+1 are not required to be
visited before 𝑣𝑥 with 1 ≤ 𝑥 ≤ 𝑖 and the path 𝑝 satisfies the precedence
conditions in 𝑃 . It is therefore a valid path in 𝐻 .

We proved that any valid path in a SOP is 𝑓 -conforming in the cor-
responding self-deleting graph and vice-versa. This holds in particular
for Hamiltonian paths. □

5. Exact and heuristic solvers

Next, we describe two solvers for the HCP-SD and TSP-SD problems:
one that produces an exact solution and one which relies on heuristics.

5.1. Exact solvers

An intuitive approach to solving the HCP on a self-deleting graph
𝑆 is to employ a DFS in a forward-search manner: starting with some
vertex 𝑝1, we delete all edges in 𝑓 (𝑝1) in 𝐺, then choose a neighbour
𝑝2 of 𝑝1 as the next vertex on the path and repeat until the path is a
Hamiltonian cycle or the current path cannot be extended, in which
case we backtrack. This approach can be improved with methods used
in algorithms for Hamiltonian cycles in conventional graphs, namely
graph/search-tree pruning, as introduced by [12,21]. Their algorithms
identify edges that must be in a Hamiltonian cycle, e.g., edges incident
to a vertex of degree 2, and employ these required edges to improve the
average runtime of a forward DFS. However, even with these pruning
rules, the algorithm fails to detect paths that cannot be extended to a
Hamiltonian cycle early. This is due to the fact that the edge deletion
is traversal dependent.

Since failures occurring at a late stage are often due to the choices at
an earlier stage of the search, we propose a backward search algorithm,
shown in Algorithm 1. This takes advantage of the late failures to
greatly reduce the size of the search tree. Instead of exploring the
path from a start vertex and deleting edges subsequently, Algorithm
1 starts by deleting all edges that would get deleted at some point. It
then explores the graph in a backward fashion, adding edges according
to visited vertices as follows. During this backward exploration of the
graph, edges are added, so searching for required edges, as is done in
conventional forward DFS for Hamiltonian cycles, is not possible.

The first call of 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ receives a single start vertex as
the path and the self-deleting graph. During the repeated calls of
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ, the path grows backwards, so the first call will be
with 𝑝𝑎𝑡ℎ = (𝑣1), the next with 𝑝𝑎𝑡ℎ = (𝑣𝑛, 𝑣1), then 𝑝𝑎𝑡ℎ = (𝑣𝑛−1, 𝑣𝑛, 𝑣1)
and so forth. During each call of 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ the residual graph

Algorithm 1 Backward search algorithm for finding a Hamiltonian
cycle in a self-deleting graph
Input: Current path, the self-deleting graph
Output: Hamiltonian cycle of 𝑆 or failure
Function: backwardSearch (𝑝𝑎𝑡ℎ, 𝑆 = (𝐺, 𝑓))
1: 𝑅 ← 𝐺 ⧵ {𝑒 ∈ 𝑓 (𝑣) ∣ 𝑣 ∉ (𝑝𝑎𝑡ℎ ⧵ 𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡)}
2: if |𝑝𝑎𝑡ℎ| = |𝑉 (𝐺)| then
3: if (𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡, 𝑝𝑎𝑡ℎ.𝑓 𝑖𝑟𝑠𝑡) ∈ 𝐸(𝑅) then
4: return [𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡] + 𝑝𝑎𝑡ℎ
5: else
6: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
7: end if
8: else
9: 𝑆𝑉 ← {𝑣 ∈ 𝑉 (𝐺)|(𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡, 𝑣) ∈ 𝐸(𝐺) ∧ (𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡, 𝑣) ∉

𝑓 (𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡)}
10: if 𝑆𝑉 ⧵ 𝑝𝑎𝑡ℎ = ∅ then
11: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
12: else
13: 𝑁 ← {𝑣 ∣ (𝑝𝑎𝑡ℎ.𝑓 𝑖𝑟𝑠𝑡, 𝑣) ∈ 𝐸(𝑅) ∧ 𝑣 ∉ 𝑝𝑎𝑡ℎ}
14: for 𝑣 ∈ 𝑁 do
15: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ([𝑣] + 𝑝𝑎𝑡ℎ, 𝑆)
16: if 𝑟𝑒𝑠𝑢𝑙𝑡 ≠ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 then
17: return 𝑟𝑒𝑠𝑢𝑙𝑡
18: end if
19: end for
20: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
21: end if
22: end if

𝑅 with respect to 𝑝𝑎𝑡ℎ is calculated (line 1). In line 2 follows a goal
check where it is first verified whether the path has the correct length
and if so, whether the missing edge between both end vertices exists
(line 3). If the initial check fails, the algorithm calculates the set 𝑆𝑉 of
vertices that are candidates for the second vertex in the Hamiltonian
path in line 9. If all the candidates are already on 𝑝𝑎𝑡ℎ the path cannot
be extended to a Hamiltonian cycle. We check this condition in line 10.
In line 13 the set 𝑁 of neighbours of the first vertex of the current 𝑝𝑎𝑡ℎ
in 𝑅 is calculated. For every neighbour, 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ is called with
an extended path until one of them returns a Hamiltonian cycle.

Lemma 5. Let 𝑆 = (𝐺, 𝑓) be a self-deleting graph. If there exists at least
one Hamiltonian cycle in 𝑆, then the backward search finds a Hamilton
cycle.

Proof. We prove by contradiction: Assume there exists a Hamiltonian
self-deleting graph 𝑆 = (𝐺, 𝑓), where the algorithm returns 𝑓𝑎𝑖𝑙𝑢𝑟𝑒. Let
𝑛 = |𝑉 (𝐺)| and 𝑃 = (𝑝1,… , 𝑝𝑛+1) with 𝑝1 = 𝑝𝑛+1 a Hamilton cycle of 𝑆.
We analyse certain function calls to prove the lemma.

If 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ((𝑝2,… , 𝑝𝑛+1), 𝑆) is called, line 1 calculates the
residual graph 𝑅 = 𝐺 ⧵ 𝑓 (𝑝1). Since |(𝑝2,… , 𝑝𝑛+1)| = 𝑛, line 3 triggers.
The algorithm then checks whether the edge (𝑝1, 𝑝2) exists in 𝑅. If so,
𝑃 is returned, which is a contradiction since we assumed 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 is
returned. However, if there is no edge (𝑝1, 𝑝2) in 𝑅 then 𝑝 is not a
Hamiltonian cycle, contradicting the assumption.

Therefore 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ((𝑝2,… , 𝑝𝑛+1), 𝑆) is never called. So there
is a largest number 2 ≤ 𝑥 ≤ 𝑛 for which 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ((𝑝𝑥,… , 𝑝𝑛+1),
𝑆) is never called. We analyse the call 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ((𝑝𝑥+1,… , 𝑝𝑛+1),
𝑆).

In line 1 the residual graph 𝑅 = 𝐺𝑉 (𝐺)⧵{𝑝𝑥+1 ,…,𝑝𝑛} is calculated. Since
|(𝑝𝑥+1,… , 𝑝𝑛+1)| < |𝑉 (𝐺)|, the algorithm continues in line 8. In line
9 the set 𝑆𝑉 of candidates for the second vertex on the Hamiltonian
cycle starting in 𝑝1 is calculated. Since 𝑃 is a Hamiltonian cycle the
set contains at least 𝑝2. And since the current path is 𝑝𝑥+1,… , 𝑝𝑛 with
𝑥 ≥ 2, 𝑝2 is not in path and the if-condition in line 10 fails.

CHAPTER 7. THE HAMILTONIAN CYCLE AND TRAVELLING SALESPERSON
PROBLEMS WITH TRAVERSAL-DEPENDENT EDGE DELETION

107

Journal of Computational Science 74 (2023) 102156

5

S. Carmesin et al.

Fig. 3. Explored nodes in the forward-DFS and backward-DFS on the dataset
random24-100.

We continue in line 13. Here, the list of neighbours 𝑁 of current
first vertex in 𝑅 that are not already on the path is calculated. We now
consider two cases:

(a) 𝑝𝑥 ∉ 𝑁 : 𝑁 contains all neighbours of 𝑝𝑥+1 in 𝑅. So if 𝑝𝑥 ∉ 𝑅
then there is no edge between 𝑝𝑥 and 𝑝𝑥+1 in the residual graph after
processing 𝑝1,… , 𝑝𝑥. Thus, 𝑝 is no Hamiltonian cycle, a contradiction.
So (b) must hold.

(b) 𝑝𝑥 ∈ 𝑁 : The only reason for not calling 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ
((𝑝𝑥,… , 𝑝𝑛+1), 𝑆) is that another call like 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ((𝑦, 𝑝𝑥+1,… ,
𝑝𝑛+1), 𝑆) with 𝑦 ∈ 𝑁 does not return failure. Thus the algorithm finds
another Hamilton cycle, this again is a contradiction.

Since we always arrive at a contradiction, the assumption does
not hold. Thus, if 𝑆 is Hamiltonian the algorithm finds a Hamiltonian
cycle. □

In order to investigate the behaviour of both exact algorithms, we
first need to define the Average Vertex Degree (AVD) for a self-deleting
graph. AVD is a metric commonly used in the analysis of static graphs
for the HCP. Let 𝑘 be the number of times an edge 𝑒 appears in the
delete function 𝑓 . The probability that the edge will be deleted after
processing any 𝑙 vertices from 𝑉 in arbitrary order is given by 𝑝(𝑒, 𝑙) =
1 −

∏𝑘−1
𝑖=0

(𝑛−𝑙)−𝑖
𝑛−𝑖 . Then, the expected ‘‘static’’ AVD of 𝑆 after processing

any 𝑙 vertices can be determined as 𝛿(𝑙) = (𝑛 − 1) − 2
𝑛
∑

𝑒∈𝐸 𝑝(𝑒, 𝑙). From
here, we can define the AVD of 𝑆 as 1

𝑛
∑𝑛

𝑙=1 𝛿(𝑙).
A dataset random24-100 of 14 400 random self-deleting graphs

with 24 vertices was generated in order to compare both exact algo-
rithms. The delete function 𝑓 was sampled uniformly randomly with
overlapping of 𝑓 (𝑣) for two distinct 𝑣 allowed. I terms of AVD, the
dataset uniformly covers the interval from 0 to 12. In an experimental
comparison between backward and forward search, both solving the
same dataset random24-100 and capped at 10 000 expanded search
nodes, the backward search performs much better. It was able to solve
all instances and on average was able to identify a Hamiltonian instance
after 27.9 explored nodes and a non-Hamiltonian instance after 1.6
explored nodes. The forward search failed to find a solution within
the limit for most instances. The diagrams in Fig. 3 show the average
explored nodes by which either algorithm was able to decide the
instance or the limit was reached.

Fig. 4(a) shows the percentage of infeasible instances decided by
the backward search at various search depths while using the same
random24-100 dataset. Infeasible instances with AVD less than 3 are

Fig. 4. Backward search behaviour.

detected instantly at depth 1. The hardest instances to detect are
located between AVDs 6 and 7. Above 7, the dataset does not contain
any infeasible instances. Finally, more than 80% of infeasible instances
are detected at depth 10, less than half of |𝑉 |.

Fig. 4(b) illustrates how the percentage of detected infeasible in-
stances at various depths depends on |𝑉 |. At a fixed depth, the percent-
age unsurprisingly decreases with increasing |𝑉 |, but even for |𝑉 | =
200 about 50% instances are detected at depth 10. Interestingly, the
percentage increases when using a relative depth and close to 100%
infeasible instances are detected at depth 0.2|𝑉 |, when |𝑉 | > 100. This
experiment indicates that the backward search algorithm’s ability to
detect infeasible instances of HCP-SD early on in the search improves
with increasing |𝑉 | and, consequently, the algorithm may be scalable
enough to find feasible solutions even for instances with |𝑉 | of practical
interest.

5.2. Heuristic solver

The proposed exact solver is likely to provide limited scalability
when addressing optimization problems due to its exhaustive nature.
Also, finding near-optimal solutions is often sufficient in practical
applications, therefore, heuristic algorithms may be the only compu-
tationally feasible approach to obtain them. A common procedure is to
design a problem-specific metaheuristic algorithm, that is tailored to a
particular application. Various heuristic approaches were successfully
applied to problems related to the TSP-SD, such as metaheuristics
based on local search [22], evolutionary optimization [23] or swarm
optimization [24].

In this paper, we use a generic metaheuristic solver for prob-
lems with permutative representation [25], so that we can remain
application agnostic regarding multiple variants of TSP-SD. The solver
implements several high-level metaheuristics and also a bank of low-
level local search operators, perturbations and construction procedures.

CHAPTER 7. THE HAMILTONIAN CYCLE AND TRAVELLING SALESPERSON
PROBLEMS WITH TRAVERSAL-DEPENDENT EDGE DELETION

108

Journal of Computational Science 74 (2023) 102156

6

S. Carmesin et al.

These can be readily applied to various problems, whose solution can
be encoded as a sequence of potentially recurring nodes. The only user
requirement is to specify a set of nodes 𝐴, lower and upper bounds
𝐿,𝑈 of the frequency of their occurrence in a solution sequence 𝑥 =
(𝑥1, 𝑥2,… , 𝑥𝑛), where 𝑥𝑖 ∈ 𝐴; a fitness function 𝑓 (𝑥) and an aggregation
of penalty functions 𝑔(𝑥). The bounds are always respected by the
solver, whereas the penalty functions are treated as soft constraints.
Their purpose is to direct the search process towards valid solutions.
TSP-SD can be described in the solver formalism as follows:

𝐴 = {𝑣1, 𝑣2,… , 𝑣𝑛} = 𝑉 (𝐺),

𝐿 = (1, 1,… , 1) = 𝑈,

𝑓 (𝑥) =
𝑛
∑

𝑖=1
‖𝑒𝑖‖,

𝑔(𝑥) =
𝑛
∑

𝑖=1
𝑔𝑖(𝑥), where

𝑔𝑖(𝑥) =

{

0, if 𝑒𝑖 ∈ 𝐸(𝐺{𝑥1 ,𝑥2 ,…,𝑥𝑖}),
𝑀, otherwise.

Here, the set of nodes to visit 𝐴 corresponds to the set of vertices 𝑉 (𝐺).
Each node 𝑣𝑖 has to be processed exactly once, thus 𝐿𝑖 = 𝑈𝑖 = 1. Then,
𝑒𝑖 is the edge {𝑥𝑖, 𝑥𝑖+1 mod 𝑛}, 𝐺{𝑥1 ,𝑥2 ,…,𝑥𝑖} is the residual graph after
processing first 𝑖 nodes in 𝑥 and 𝑀 is a large constant introduced to
penalize using an already deleted edge 𝑒𝑖 in 𝑥. The goal is to minimize
the total length of the cycle given by 𝑥 and force all penalties 𝑔𝑖(𝑥) to
zero, if possible.

For the weak TSP-SD, both the set of nodes 𝐴 and the respective
bounds 𝐿,𝑈 are defined in the same way as in the TSP-SD, but the
definition of 𝑓 (𝑥) and 𝑔𝑖(𝑥) differs:

𝑓 (𝑥) =
𝑛
∑

𝑖=1
‖𝑝𝑖‖,

𝑔𝑖(𝑥) =

{

0, if 𝑝𝑖 exists in 𝐺{𝑥1 ,𝑥2 ,…,𝑥𝑖},
𝑀, otherwise.

Here, 𝑝𝑖 is the shortest path from 𝑥𝑖 to 𝑥𝑖+1 mod 𝑛 in the residual graph
𝐺{𝑥1 ,𝑥2 ,…,𝑥𝑖}, which is found using the A* algorithm [26]. Thus, the time
complexity of weak TSP-SD fitness evaluation is higher than TSP-SD by
(|𝐸|). Only the first and last vertex of 𝑝𝑖 are processed. If 𝑝𝑖 does not
exist, a large constant 𝑀 is added to the penalty 𝑔(𝑥) via 𝑔𝑖(𝑥). The goal
is to minimize the total length of the closed walk given by 𝑥.

6. Statistical analysis of HCP-SD

In this section, we investigate properties analogous to those pre-
viously studied in the literature for HCP, since they are crucial for
understanding behaviour and evaluating the performance of the pro-
posed solvers. For the HCP, the probability density function of a ran-
domly generated graph being Hamiltonian was experimentally shown
to be sigmoidally shaped around a certain threshold point [14]. This
threshold corresponds to the graph’s AVD, for which the probability is
approximately 0.5. Their experiments indicate that HCP instances close
to this boundary are the most expensive to decide for various exact
algorithms in terms of computational cost, although isolated clusters
of hard instances were also identified far away from it. The location of
this threshold has been proved to be 𝑙𝑛(𝑉) + 𝑙𝑛(𝑙𝑛(𝑉)), which is called
the Komlós–Szemerédi bound [11].

First, we replicated the experiment from [14], showing the proba-
bility density function of Hamiltonicity for a randomly generated graph
with 24 vertices. For this purpose, we generated a dataset of 100
random graphs for every number of edges from 1 to 144, resulting in
14 400 graphs with AVD ranging from 0 to 12. The HCP was decided for
the whole dataset using the Concorde TSP solver and the result of the
experiment is shown in Fig. 5(a) - HCP (exact). The dataset random24-
100 of 14 400 random self-deleting graphs with 24 vertices was created

analogously, covering the same range of AVDs. On this dataset, HCP-SD
was decided with both an exact and heuristic solver and weak HCP-
SD with a heuristic solver described in Section 5. The exact solver was
always terminated after successfully deciding the problem, whereas the
heuristic solver was terminated either after finding a feasible solution,
or reaching a time budget of |𝑉 | seconds. Therefore, the heuristic
solver’s results are suitable for assessing the solver’s properties, rather
than reasoning about the problem itself. Fig. 5(a) indicates that the
probability density function of HCP-SD is shaped similarly to that of
HCP but is steeper and the threshold point is located further to the
right.

The weak HCP-SD appears to have similar properties, but there is
no exact solver available, and using the heuristic solver may affect
the location of the threshold point, as it may label a feasible instance
as infeasible. We can see that instances with AVD less than 3 that
were shown to be easy to decide for the exact solver in Fig. 4(a),
actually have zero probability of being Hamiltonian. Instances with
AVD between 6 and 7, which were shown to be the hardest to decide,
are located close to the HCP-SD Hamiltonicity threshold point. Thus, in
a similar fashion to HCP, HCP-SD instances close to the threshold point
are computationally harder for the exact solver.

Second, 12 more datasets of random self-deleting graphs with 10
to 200 vertices and uniformly randomly sampled 𝑓 were generated
to investigate the Hamiltonicity bound w.r.t. to |𝑉 | for both variants
of HCP-SD. Each of these datasets was generated to cover an interval
that contains the threshold point of both problems and consisted of
2500 instances, evenly distributed across the interval into groups of
50 instances with the same AVD. Again, the HCP-SD was decided with
an exact and heuristic solver and the weak HCP-SD with a heuristic
solver, and the location of the threshold point was determined for each
dataset and problem. The locations of the threshold points are shown
in Fig. 5(b), thus showing a bound analogous to the Komlós–Szemerédi
bound. The bound HCP-SD (exact) follows a sublinear, presumably
logarithmic trend, similar to the Komlós–Szemerédi bound but faster
growing. As for the weak HCP-SD, the heuristic data evidently do not
provide an accurate estimate of the bound.

The threshold points should never be higher than for the HCP-SD
because all self-deleting graphs feasible in HCP-SD are also feasible
in weak HCP-SD. The bound HCP-SD (heuristic) illustrates that the
heuristic solver consistently struggles with finding feasible solutions
close to the real Hamiltonicity bound, found by the exact solver.

7. TSP-SD solvers evaluation

So far, we have focused only on the results relevant to decision prob-
lems, but both proposed solvers are designed to address the formulated
optimization problems as well. Each solver has unique properties that
are investigated in a series of eight experiments on a newly created
dataset.1 The dataset consists of 11 instances of self-deleting graphs
with a size ranging from 14 to 1084 vertices. The instances are selected
from the TSPLIB library [28], but a uniformly randomly generated
delete function 𝑓 is added. To give an idea about the delete function,
Fig. 6 shows the sets of edges deleted by processing four different nodes
in the instance berlin52-13.2. In terms of the AVD, most of the instances
are generated close to the HCP-SD Hamiltonicity bound of the heuristic
solver so that they could be solved by the heuristic solver alone. The
following naming format is used: original_name|𝑉 |-AVD.

The heuristic solver offers a portfolio of alternative components,
each suitable for a different set of problems with permutative represen-
tation. The solver must be tuned to achieve the best performance for
a specific problem. The tuning was carried out using the irace pack-
age [29] with a tuning budget of 2500 experiments. The configuration
obtained is shown in Table 1. The tuner selected the Basic Variable

1 All datasets and codes are publicly available at [27].

CHAPTER 7. THE HAMILTONIAN CYCLE AND TRAVELLING SALESPERSON
PROBLEMS WITH TRAVERSAL-DEPENDENT EDGE DELETION

109

Journal of Computational Science 74 (2023) 102156

7

S. Carmesin et al.

Fig. 5. Comparison of Hamiltonicity bounds.

Table 1
Heuristic solver - tuned configuration.

Component Value

Metaheuristic basicVNS (𝑘𝑚𝑖𝑛 = 7, 𝑘𝑚𝑎𝑥 = 10)
Construction nearestNeighbor
Perturbation randomMoveAll (𝑎𝑙𝑙𝑜𝑤𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒)
Local search pipeVND (𝑓𝑖𝑟𝑠𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒)
Operators centeredExchange (𝑝 ∈ {1, 2, 3, 5}), moveAll (𝑝 ∈ {2, 10})

relocate(𝑝 ∈ {1, 2, 3, 4, 5}), exchangeIds
exchange(𝑝, 𝑞 ∈ {(1, 2), (2, 4), (3, 4)})
reverseExchange(𝑝, 𝑞 ∈ {(1, 2), (2, 2), (3, 3), (3, 4), (4, 4)})

Neighborhood Search (VNS) [30] to use as a high-level metaheuristic
and the Pipe Variable Neighborhood Descent (VND) [31] to control
the local search. The results of the exact solver were generated on a
dedicated machine with Ubuntu 18.04 OS, Intel Core i7-7700 CPU.
Experiments using the heuristic solver were generated on an AMD EPYC
7543 CPU cluster. Each instance was solved once by the exact solver
and 50 times by the heuristic solver, since it is stochastic. The heuristic
solver always had a time budget of 10|𝑉 | seconds per single run. We
present the results in Tables 2, 3 and 4. Individual experiments are
referred to by the column letter of the corresponding table. Finally, the
relative improvement brought by an experiment B relative to an earlier
experiment A in a particular instance 𝑖 is calculated as 100×(1− 𝑜𝑏𝑗𝑖(𝐵)

𝑜𝑏𝑗𝑖(𝐴)
),

where 𝑜𝑏𝑗𝑖(𝐴) is the objective value on 𝑖 in 𝐴. This value is eventually
averaged across the entire dataset.

The proposed backward search is introduced as a decision algorithm
for the HCP-SD in Algorithm 1. To address the optimization problem
TSP-SD, only a slight modification is required. The algorithm does
not stop when the first valid solution is found (line 4). Instead, it
continues to search until a given time limit is reached while storing
the best solution found so far. Another minor modification is the order
of expansion at line 14. In the default variant, the nodes 𝑣 ∈ 𝑁 are

traversed in arbitrary order, determined by the iterator implementation
of the set 𝑁 . In the following experiments, a greedy expansion is also
tested. In this variant, nodes 𝑣 ∈ 𝑁 are sorted according to their
distance from 𝑝𝑎𝑡ℎ.𝑓 𝑖𝑟𝑠𝑡 and expanded from closest to farthest.

Table 2 documents the performance of the exact TSP-SD solver.
The backward search performs the path expansion in default order in
experiments in columns A and B, whereas greedy expansion is used
in experiments in columns C and D. Column A presents the objective
values and computation times needed to find the first valid solution of
TSP-SD while using the default expansion. A solution is found within
one second for instances with up to |𝑉 | = 202 and within one minute
for all instances in the dataset. The dataset contains two variants of
the berlin52 instance with different values of AVD, from which the
berlin52-10.4 instance is closer to the Hamiltonicity bound. Finding
a valid solution for berlin52-10.4 requires 10 times more time than
berlin52-13.2. Thus, AVD seems to be an important factor playing
against the backward search. The scalability of the exact solver in this
experiment is surprisingly good, as was already indicated in Fig. 4(b).

In Table 2, column B, the exact solver was given a budget of 12 h
to solve the TSP-SD for each instance. The first three were solved to
optimality, but the remaining eight reached the time limit. On average,
the first valid solution was improved by 9.75%, but the improvement
decreases with increasing instance size. In the case of the three largest
instances, the improvement is only 1%. This experiment only confirms
the expectation of poor scalability when using an exact approach in
an optimization problem due to its exhaustive nature. Unlike in the
previous experiment, the berlin52-10.4 variant was actually easier to
solve when addressing the optimization problem, as the backward
search tree is presumably pruned more with a lower AVD.

Table 2, column C, depicts the benefit of using the greedy expansion
in the backward search. The computation times needed to find the first
valid solution are slightly, but consistently better than with the default
expansion. More importantly, the objective values are frequently more
than ten times better than with the default expansion, which is a consid-
erable improvement brought by a simple heuristic rule. On average, the
first valid solutions found with the greedy expansion are better by 56%
than with the default expansion. The improvement increases with in-
creasing instance size and is around 90% for the four largest instances.
Fig. 7(a) shows the best solution obtained by the exact solver with
default expansion, while Fig. 7(b) with greedy expansion. The figures
illustrate that using the default expansion is equivalent to generating a
random valid solution, whereas the greedy solution behaves reasonably
in less dense areas. As shown in Table 2, column D, increasing the time
budget to 12 h further improves the objective by 6% on average relative
to the first valid greedy solutions. Similarly to random expansion, this
improvement decreases with increasing instance size and is less than
1% for the largest instance.

Table 3, column A, presents the results of the heuristic solver alone
on the TSP-SD. Each instance was solved 50 times with a time budget
of 10|𝑉 | seconds, e.g. 140 s for the burma14-3.1 instance. The optimal
solution was found for the two smallest instances. However, the solver
cannot find a valid solution every time and fails entirely to provide any
valid solutions in all 50 runs for the berlin52-10.4 instance. In terms of
solution quality, the best solutions found by the heuristic solver alone
are worse by 26% on average than the first valid solutions found by
the greedy exact solver. Furthermore, the mean success rate is only
62%. The heuristic solver is expected to converge faster than the exact
solver, but presumably spends a large portion of the time budget on
finding a valid initial solution instead. This assumption is confirmed
in Table 3, column B, where the heuristic solver is initialized with
the first valid solution found by the exact solver (Table 2, column C).
Here, the best solutions found by the warm-started heuristic solver
in 10|𝑉 | seconds are better by 5% on average than those obtained
by the greedy exact solver in 12 h and by 11.3% than the first valid
solutions. Most importantly, the improvement does not decrease with
increasing instance size and is consistent across the entire dataset. The

CHAPTER 7. THE HAMILTONIAN CYCLE AND TRAVELLING SALESPERSON
PROBLEMS WITH TRAVERSAL-DEPENDENT EDGE DELETION

110

Journal of Computational Science 74 (2023) 102156

8

S. Carmesin et al.

Fig. 6. Berlin52-13.2 - delete function 𝑓 for different nodes; |𝑓 (𝑣)| is the number of edges removed by processing 𝑣.

Table 2
TSP-SD optimization results - exact solver.
Expansion Default Greedy

Stop condition First valid 12 h First valid 12 h

Instance ↓ obj. Time (s) obj. Time (s) obj. Time (s) obj. Time (s)

burma14-3.1 55 <0.01 52 <0.01 52 <0.01 52 <0.01
ulysses22-5.5 174 <0.01 141 0.02 173 <0.01 141 0.02
berlin52-10.4 33 388 0.37 23 866 2942 29 302 0.16 23 866 2858
berlin52-13.2 28 470 0.03 19 417 43 200 18 461 <0.01 17 938 43 200
eil101-27.5 3 447 0.10 3 128 43 200 1 715 0.01 1 642 43 200
gr202-67.3 3 073 0.48 2 954 43 200 934 0.08 862 43 200
lin318-99.3 576 916 1.43 560 322 43 200 116 719 0.25 115 058 43 200
fl417-160.6 510 858 3.23 493 671 43 200 31 387 1.05 29 747 43 200
d657-322.7 872 446 8.85 860 343 43 200 98 599 4.41 93 668 43 200
rat783-481.4 174 085 14.30 172 727 43 200 15 652 8.39 15 300 43 200
vm1084-848.9 8 616 499 45.46 8 527 195 43 200 349 923 35.81 348 304 43 200

A B C D

Table 3
TSP-SD optimization results - heuristic solver.
Setup Heuristic only, 10|𝑉 | seconds Exact init., 10|𝑉 | seconds

Instance ↓ min mean ± stdev Valid (%) min mean ± stdev

burma14-3.1 52 52 ± 0 100 52 52 ± 0
ulysses22-5.5 141 144 ± 8 47 141 166 ± 5
berlin52-10.4 – – 0 24 456 25 741 ± 861
berlin52-13.2 18 304 19 192 ± 648 40 17 263 17 835 ± 277
eil101-27.5 1 532 1728 ± 87 51 1 394 1513 ± 55
gr202-67.3 1 184 1352 ± 87 78 812 849 ± 11
lin318-99.3 189 225 198 324 ± 8171 11 110 698 110 888 ± 355
fl417-160.6 57 686 68 736 ± 4830 95 27 162 27 259 ± 140
d657-322.7 141 030 150 185 ± 5227 100 85 054 85 347 ± 162
rat783-481.4 21 069 22 078 ± 619 100 13 753 13 833 ± 115
vm1084-848.9 489 491 513 769 ± 9452 100 325 218 326 067 ± 503

A B

CHAPTER 7. THE HAMILTONIAN CYCLE AND TRAVELLING SALESPERSON
PROBLEMS WITH TRAVERSAL-DEPENDENT EDGE DELETION

111

Journal of Computational Science 74 (2023) 102156

9

S. Carmesin et al.

Fig. 7. Berlin52-13.2 - best TSPSD solutions of different solvers and setups.

Table 4
Weak TSP-SD optimization results - heuristic solver.
Setup Heuristic only, 10|𝑉 | seconds TSP-SD best init., 10|𝑉 | seconds

Instance ↓ min mean ± stdev Valid (%) min mean ± stdev

burma14-3.1 52 52 ± 0 100 52 52 ± 0
ulysses22-5.5 129 129 ± 1 100 129 129 ± 0
berlin52-10.4 18 701 20 328 ± 1174 100 18 354 19 740 ± 480
berlin52-13.2 14 579 15 760 ± 593 100 14 838 16 320 ± 585
eil101-27.5 1 313 1442 ± 69 100 1 240 1295 ± 23
gr202-67.3 886 1060 ± 122 100 779 790 ± 2
lin318-99.3 135 965 143 259 ± 5488 100 104 422 104 945 ± 204
fl417-160.6 26 035 26 891 ± 733 100 25 976 26 001 ± 33
d657-322.7 96 213 99 730 ± 1527 100 83 402 83 534 ± 44
rat783-481.4 15 072 15 409 ± 174 90 13 599 13 620 ± 5
vm1084-848.9 352 794 360 779 ± 3296 76 319 335 319 481 ± 112

A B

previous two experiments reveal the drawbacks of both approaches:
the exact solver scales poorly in the optimization problem, whereas
the penalty-based heuristic solver does not provide a valid solution
reliably. On the other hand, the exact solver provides valid solutions
to all instances very fast, and the heuristic solver is much better at
refining good-quality solutions. Therefore, using both solvers sequen-
tially, i.e., implementation of a warm start optimization, combines the
advantages of both. Fig. 7(c) shows the best solution of berlin52-13.2
obtained by the heuristic solver alone while Fig. 7(d) the best-known
solution, obtained by the warm-started heuristic solver. Both solutions
remain entangled in the centre area with the most vertices, which
may be attributed to the naturally denser randomly generated delete
function 𝑓 in this area, as indicated in Fig. 6.

Table 4 illustrates the benefit of relaxing TSP-SD to weak TSP-SD.
Every solution to the TSP-SD is also valid for the weak TSP-SD, but
the weak formulation might yield a better optimal value. On the other
hand, the fitness evaluation in weak TSP-SD calculates the shortest
paths 𝑝𝑖 instead of reading the edge weights. Thus, the time complexity

of the evaluation is higher by (|𝐸|), and the heuristic solver is dras-
tically slower when solving the weak TSP-SD. The performance of the
heuristic alone is shown in Table 4A. Regarding the success rate, the
heuristic is significantly more successful than with TSP-SD, as the space
of valid solutions in the weak TSP-SD formulation is much larger. In
Table 4, column B, the best-known TSP-SD solution from the initialized
heuristic solver (Table 3, column B) was used as an initial solution. The
experiment shows that only the TSP-SD solution of the smallest instance
was not improved in the weak TSP-SD formulation. In the remaining
instances, the weak TSP-SD solution is better by 7% on average than
the best-known TSP-SD solution, so the relaxation is highly beneficial.

8. Conclusions

We introduce new variants of the Hamiltonian Cycle and the Trav-
elling Salesperson Problems with self-deleting graphs, for which formal
definitions, theoretical analyses and two solvers were proposed. In the
future, we intend to investigate general heuristics for the proposed
backward search. We also want to develop a new solver which works in

CHAPTER 7. THE HAMILTONIAN CYCLE AND TRAVELLING SALESPERSON
PROBLEMS WITH TRAVERSAL-DEPENDENT EDGE DELETION

112

Journal of Computational Science 74 (2023) 102156

10

S. Carmesin et al.

the space of feasible solutions. Finally, we intend to study how to derive
self-deleting graphs using motion planning techniques to determine
which edges should be deleted.

CRediT authorship contribution statement

Sarah Carmesin: Methodology, Software, Formal analysis, Investi-
gation, Writing – original draft. David Woller: Methodology, Software,
Formal analysis, Investigation, Writing – original draft. David Parker:
Conceptualization, Methodology, Writing – review & editing, Super-
vision. Miroslav Kulich: Conceptualization, Methodology, Software,
Writing – review & editing, Supervision. Masoumeh Mansouri: Con-
ceptualization, Methodology, Software, Writing – review & editing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data and code are publicly available and referenced in the
manuscript.

Acknowledgements

The research was supported by Czech Science Foundation Grant No.
23-05104S. The work of David Woller has also been supported by the
Grant Agency of the Czech Technical University in Prague, grant No.
SGS23/122/OHK3/2T/13. Computational resources were provided by
the e-INFRA CZ project (ID:90140), supported by the Ministry of Edu-
cation, Youth and Sports of the Czech Republic. Masoumeh Mansouri is
a UK participant in Horizon Europe Project CONVINCE, and her work
is supported by UKRI grant number 10042096.

References

[1] E. Aaron, D. Krizanc, E. Meyerson, DMVP: foremost waypoint coverage of time-
varying graphs, in: International Workshop on Graph-Theoretic Concepts in
Computer Science, Springer, 2014, pp. 29–41.

[2] O. Michail, P.G. Spirakis, Traveling salesman problems in temporal graphs,
Theoret. Comput. Sci. 634 (2016) 1–23.

[3] C.-S. Liao, Y. Huang, The covering Canadian traveller problem, Theoret. Comput.
Sci. 530 (2014) 80–88.

[4] D. Chan, Precedence constrained TSP applied to circuit board assembly and no
wait flowshop, Int. J. Prod. Res. 31 (9) (1993) 2171–2177.

[5] L.F. Escudero, An inexact algorithm for the sequential ordering problem,
European J. Oper. Res. 37 (2) (1988) 236–249.

[6] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, M. Sudan,
The minimum latency problem, in: Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing, 1994, pp. 163–171.

[7] J. Mikula, M. Kulich, Solving the traveling delivery person problem with limited
computational time, CEJOR Cent. Eur. J. Oper. Res. (2022) 1–31.

[8] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 3 (1)
(1952) 69–81.

[9] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1) (1960) 55, URL
http://www.jstor.org/stable/2308928.

[10] L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (4) (1976)
359–364.

[11] J. Komlós, E. Szemerédi, Limit distribution for the existence of Hamiltonian
cycles in a random graph, Discrete Math. 43 (1) (1983) 55–63.

[12] F. Rubin, A search procedure for Hamilton paths and circuits, J. ACM 21 (4)
(1974) 576–580.

[13] B. Vandegriend, Finding Hamiltonian Cycles: Algorithms, Graphs and Perfor-
mance, University of Alberta, 1999.

[14] J. Sleegers, D.v.D. Berg, Backtracking (the) algorithms on the Hamiltonian cycle
problem, Int. J. Adv. Intell. Syst. 14 (1–2) (2022) 1–13.

[15] D.L. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The Traveling Salesman
Problem, Princeton University Press, 2011.

[16] E.M. Arkin, S.P. Fekete, J.S. Mitchell, Approximation algorithms for lawn mowing
and milling, Comput. Geom. 17 (1–2) (2000) 25–50.

[17] M. Grötschel, M. Jünger, G. Reinelt, Optimal control of plotting and drilling
machines: a case study, Z. Oper. Res. 35 (1) (1991) 61–84.

[18] M. Mansouri, F. Lagriffoul, F. Pecora, Multi vehicle routing with nonholonomic
constraints and dense dynamic obstacles, in: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE, 2017, pp.
3522–3529.

[19] A. Ullrich, J. Hertzberg, S. Stiene, ROS-based path planning and machine
control for an autonomous sugar beet harvester, in: Proceedings of International
Conference on Machine Control & Guidance, (MCG-2014), 2014.

[20] E. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1
(1959) 269–271.

[21] B. Vandegriend, J. Culberson, The Gn, m phase transition is not hard for the
Hamiltonian Cycle problem, J. Artificial Intelligence Res. 9 (1998) 219–245.

[22] K. Helsgaun, An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Con-
strained Traveling Salesman and Vehicle Routing Problems, Tech. rep., Roskilde
University, Roskilde, 2017, pp. 24–50.

[23] N.R. Sabar, A. Bhaskar, E. Chung, A. Turky, A. Song, A self-adaptive evolutionary
algorithm for dynamic vehicle routing problems with traffic congestion, Swarm
Evol. Comput. 44 (2019) 1018–1027.

[24] X. Xiang, J. Qiu, J. Xiao, X. Zhang, Demand coverage diversity based ant colony
optimization for dynamic vehicle routing problems, Eng. Appl. Artif. Intell. 91
(2020) 103582.

[25] D. Woller, J. Hrazdíra, M. Kulich, Metaheuristic solver for problems with
permutative representation, in: Intelligent Computing & Optimization, Springer
International Publishing, Cham, 2022, pp. 42–54.

[26] P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination
of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (2) (1968) 100–107,
http://dx.doi.org/10.1109/TSSC.1968.300136.

[27] D. Woller, TSP-SD resources, http://imr.ciirc.cvut.cz/Research/TSPSD, Last
accessed: 18.10.2023.

[28] G. Reinelt, TSPLIB—A traveling salesman problem library, ORSA J. Comput. 3
(4) (1991) 376–384.

[29] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, M. Birattari, The
irace package: Iterated racing for automatic algorithm configuration, Oper. Res.
Perspect. 3 (2016) 43–58, http://dx.doi.org/10.1016/j.orp.2016.09.002.

[30] P. Hansen, N. Mladenović, J. Brimberg, J.A.M. Pérez, Variable neighborhood
search, in: Handbook of Metaheuristics, Springer, 2019, pp. 57–97.

[31] A. Duarte, J. Sánchez-Oro, N. Mladenović, R. Todosijević, Variable neighborhood
descent, in: Handbook of Heuristics, Springer International Publishing, 2018, pp.
341–367.

Sarah Carmesin is currently a Ph.D student at the Uni-
versity of Birmingham. She received her M.Sc. degree
in Computer Science from the Fernuniversität Hagen in
2021. Her research interests lie in the intersections of
combinatorics, algorithms and robot coverage planning.

David Woller, M.Sc., received his M.Sc. degree in Cyber-
netics and Robotics from the Czech Technical University
(CTU) in Prague in 2019. He is currently a Ph.D. student
at the Czech Institute of Informatics, Robotics, and Cyber-
netics, CTU. He spent 3 months at a research internship at
the Avignon University, Laboratory of Informatics, France.
His research interests include Combinatorial Optimization
methods, especially metaheuristics for large-scale planning
and scheduling optimization problems.

David Parker is a Professor of Computer Science at the
University of Oxford. His research is in formal verification,
with a particular focus on the analysis of probabilistic
systems, and he leads the development of the widely used
probabilistic verification tools PRISM and PRISM-games.
His current research interests include the development of
verification techniques for applications in AI and machine
learning, and the use of game-theoretic methods for formal
verification.

CHAPTER 7. THE HAMILTONIAN CYCLE AND TRAVELLING SALESPERSON
PROBLEMS WITH TRAVERSAL-DEPENDENT EDGE DELETION

113

Journal of Computational Science 74 (2023) 102156

11

S. Carmesin et al.

Miroslav Kulich is currently an assistant professor at the
Czech Institute of Informatics, Cybernetics, and Robotics,
Czech Technical University (CTU) in Prague. He received
his Ph.D. degree in Artificial Intelligence and Biocybernetics
at CTU in Prague, Faculty of Electrical Engineering in
2004, and RNDr. degree at Charles University in Prague,
Faculty of Mathematics and Physics in 2005. He spent 6
months at a research fellowship at the Helsinki University
of Technology, Automation Technology Laboratory, Finland.
His research interests include planning for single and multi-
robot systems, especially in exploration and search&rescue
scenarios and data fusion and interpretation.

Masoumeh Mansouri is currently an associate professor
in the School of Computer Science at the University of
Birmingham, UK. Previously, she was a researcher at the
Center for Applied Autonomous Sensor Systems at Öre-
bro University, Sweden, where she received her Ph.D.
as well. She was also a visiting researcher at the Ox-
ford Robotics Institute and had a research stay in Sven
Koenig’s lab at the University of Southern California. Her
research interest includes hybrid methods that integrate
automated task/motion/coverage planning, scheduling, as
well as temporal and spatial reasoning.

CHAPTER 7. THE HAMILTONIAN CYCLE AND TRAVELLING SALESPERSON
PROBLEMS WITH TRAVERSAL-DEPENDENT EDGE DELETION

114

Chapter 8

Where to place a pile?

The last core publication is called Where to place a pile? [c6] and it presents a follow up
research to the core publication [c5]. The methods presented in [c5] and [c6] are combined
together in [r11].

[c6] Kulich, M., Woller, D., Carmesin, S., Mansouri, M., Přeučil, L., “Where
to Place a Pile?”, in 2023 European Conference on Mobile Robots (ECMR),
IEEE, 2023. doi: 10.1109/ecmr59166.2023.10256330, 20% contribution,
citations: 0 in Web of Science, 0 in Scopus, 0 in Google Scholar.

This publication focuses on an important subproblem of the open-pit mining applica-
tion described in Chapter 7, which was not addressed in [c5]. Given a TSP path on a
simple undirected graph, the goal is to place a circular obstacle near each node once it
is visited. The path must not collide with any of the circles, and the common radius of
the circles is to be maximized. This problem is formally defined as the Path-Conforming
Circle Placement Problem (PCCP). We also propose a relaxed variant, where only the
path segment that is yet to be traversed must not collide with any of the circles already
placed (Weak PCCP).

The main theoretical result of the paper is the determination of the lower and upper
bounds for the maximal circle radius in the PCCP. In addition to estimating the optimal
value, the bounds are utilized to speed up the proposed algorithms. Then, we propose a
local search heuristic algorithm for the PCCP with a fixed radius, which attempts to find
a valid placement given radius value as input. The crucial part of the algorithm is the fast
identification of valid circle centers, which is achieved by intersecting Voronoi diagrams
for nodes and path segments with all candidate circle centers. This algorithm is then used
in a simple interval bisection algorithm, which addresses the main problem, the PCCP.
The overall approach always finds a feasible solution, although finding the highest radius
possible is not guaranteed.

The experimental results document the scalability and solution quality w.r.t. the
bound estimates on two artificial datasets. For the PCCP, the proposed algorithm is ca-
pable of solving instances with up to 1300 nodes to local optimality in seconds. As for the
Weak PCCP, the computation times are up to several minutes. The proposed algorithm
is sufficiently efficient to be used as a subroutine when addressing Travelling Salesperson
Problem with Circle Placement (TSP-CP), which combines the PCCP and the TSP-SD
and is studied in [r11]. The TSP-CP fully addresses the motivating application for [c5]
and [c6] in autonomous open-pit mining, where the goal is to determine simultaneously
drill rig path and obstacle placement. In [r11], we propose a hybrid algorithm for the
TSP-CP based on the approaches for TSP-SD and PCCP and extend it for the Dubins
vehicle model [98].

115

https://doi.org/10.1109/ecmr59166.2023.10256330

Where to Place a Pile?

Miroslav Kulich1, David Woller1,2, Sarah Carmesin3, Masoumeh Mansouri3, and Libor Přeučil1

Abstract— When planning missions for autonomous machines
in real-world scenarios, such as open-pit mining, painting,
or harvesting, it is important to consider how the machines
will alter the working environment during their operations.
Traditional planning methods treat such changes, like piles built
during drilling, as constraints given to the planner that depend
on the machine’s trajectory. The goal is to find a trajectory that
satisfies these constraints. However, our approach formulates
the planning problem as finding optimal positions for changes,
such as piles, along the machine’s trajectory. We propose a
heuristic solver and provide extensive experimental evaluations.

I. INTRODUCTION

With increasing levels of autonomy, robots are deployed in
more and more complex scenarios. In a mining application,
one or more drill machines operate in an open-pit mine to
drill blast holes in predetermined targets. After the blast
holes are drilled, they are filled with explosive material and
detonated, and the ore is processed for mineral extraction.
The drill machines can autonomously navigate to the targets,
level themselves, drill, and retract. However, the drilling
process creates piles of excess material around the hole,
which must be cleared before the machine can navigate to the
next target. The Drill Pattern Planning Problem (DP3) [1] for
a single drill machine or a fleet of these involves computing
a time-optimal plan that ensures the machine(s) can reach
each drill target, perform the defined operations, and move
away from the target without colliding with obstacles, other
machines, or the excess material created during the drilling
process.

Mansouri et al. [1] propose a method for solving multi-
vehicle DP3 considering the dimensions of the machines,
including the size of the dust guard and jacks used for
leveling and the time required to perform each task. The
authors break down the problem into sub-problems, identifies
interdependency among the sub-problems, and interleaves
reasoning within each sub-problem. The approach is further
improved and defined as MVRP-DDO (Multi Vehicle Rout-
ing with Nonholonomic Constraints and Dense Dynamic Ob-

1 Miroslav Kulich, David Woller, and Libor Přeučil are with Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical
University in Prague, Jugoslávských partyzánů 1580/3, 160 00 Prague,
Czech Republic {miroslav.kulich, david.woller,
libor.preucil}@cvut.cz

2 David Woller is also with Department of Cybernetics, Faculty of
Electrical Engineering, Czech Technical University in Prague, Karlovo
náměstı́ 13, 121 35 00 Prague, Czech Republic

3 Sarah Carmesin and Masoumeh Mansouri are with School of Com-
puter Science, University of Birmingham, Edgbaston, B15 2TT Birm-
ingham, United Kingdom sxc1431@student.bham.ac.uk,
m.mansouri@bham.ac.uk

979-8-3503-0704-7/23/$31.00 ©2023 IEEE

Fig. 1: Drilling scenario.

stacles) in [2]. Carmesin et al. [3] introduce new variants of
the Hamiltonian Cycle and Travelling Salesperson problems
inspired by the open-pit mining application. Specifically, the
authors assume dynamic graphs where edges are deleted or
made untraversable depending on the already visited vertices.
Besides formal definitions of the problems for such graphs,
problems’ properties are theoretically analyzed, and two
solvers are proposed.

Another application where heavy vehicles are not allowed
to pass already visited areas is autonomous harvesting. In the
harvesting application, harvested areas limit the mobility of
harvesting machines, hence affecting the reachability among
the nodes representing areas to be harvested. Ullrich et al. [4]
propose a graph-search planner that searches a directed graph
representing the harvesting area. The designed cost function
considers the number of passes through individual edges to
tackle multiple passing of edges.

The aforementioned approaches assume the constraints
caused by drilling/harvesting are predefined, and the planner
can only affect the order in which they appear. In [1], [2],
for example, piles are placed at the same positions as blast
holes. Similarly, the set of edges to be deleted after visiting a
vertex is predefined in [3], while edges are removed as they
are traversed in [4]. Our approach is different. We assume
that piles are built in the vicinity of blast holes, but their exact
positions can vary, and the planning algorithm has to decide
where to place them. Specifically, a trajectory for a drilling
machine is given, and we ask the following questions:

• Can we place piles of a given radius so that the
machine’s trajectory is not obstructed by them?

• What is the largest radius for which the machine’s
trajectory is not obstructed by the piles?

• How should the piles be placed to ensure that the
machine’s path is not obstructed?20

23
 E

ur
op

ea
n

Co
nf

er
en

ce
 o

n
M

ob
ile

 R
ob

ot
s (

EC
M

R)
 |

 9
79

-8
-3

50
3-

07
04

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EC

M
R5

91
66

.2
02

3.
10

25
63

30

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on January 05,2024 at 12:42:32 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 8. WHERE TO PLACE A PILE?

116

We formulate two problems related to the above questions
formally in Section II and propose a solver for both problems
(Section III). The performance of the solver is extensively
evaluated through experiments with a specially designed
dataset, and the results are discussed in Section IV. The
concluding remarks are presented in Section V.

II. PROBLEM FORMULATION
Let P = ⟨p1, p2, . . . pn⟩ be a sequence of points in

R2 forming a polygonal path, i.e., a curve consisting of
line segments connecting the consecutive points. The Path
Conforming Circles Placement Problem (PCCP) is to find a
set of circles K = {κi}i∈I , where I = {1, . . . n}, and κi is
a circle with center ci and radius ri, such that:
(C1) the radii of all circles are equal: ri = r ∀i ∈ I ,
(C2) ith point lies on ith circle: |pici| = r ∀i ∈ I ,
(C3) intersection of any two circles is empty:

κi ∩ κj = ∅ ∀i, j ∈ I, i ̸= j,
(C4) intersection of any circle with the path is empty:

κi ∩ P = ∅ ∀i ∈ I , and
(C5) r is maximal.
We say that κi is associated with pi.

Let headk(P) = ⟨p1, p2, . . . , pk−1⟩ be a head of
polygonal path P = ⟨p1, p2, . . . pn⟩ and tailk(P) =
⟨pk, pk+1, . . . , pn⟩ its tail. The Weak PCCP (WPCCP) re-
laxes condition C4 by allowing for the nonempty intersection
of the ith circle with headi(P). The modified condition for
the WCCP is thus:
(4∗) κi ∩ taili(P) = ∅ ∀i ∈ ⟨1, n⟩

Examples of the problem instances and their solutions are
shown in Fig. 2. As the WPCCP is less constrained, the
maximum radius found for it is higher than the one for the
PCCP.

Although the PCCP and WPCCP are new, we can take
inspiration from a class of problems seeking the largest
empty circle. The classic example of this class is the Largest
Empty Circle Problem (LEC) which consists in finding the
largest circle C centered in the convex hull of a set of points
such that no point lies in the interior of the circle. Shamos [5]
propose an algorithm solving the LEC based on an effective
search of Voronoi diagrams. Thoussaint [6] subsequently
corrected the algorithm showing that Shamos made a wrong
assumption about the intersection of a convex hull with a
Voronoi diagram, while [7] further improved the algorithm
complexity to O(n[h log n]), where n is the number of points
and h is the number of convex hull edges. The query variant
of the LEC is addressed in [8]. The aim is to preprocess the
input points to identify the largest empty circle efficiently.
Finally, Augustine et al. [9] address the constrained variant
where the circle has to be centered on a given line. All the
aforementioned formulations search for a single circle while
we seek a set of circles. This makes our formulation novel
and challenging.

III. APPROACH
In this section, we introduce a solver for both PCCP and

WPCCP. We start with the description of a general structure

which is the same for both problems. The next subsec-
tions III-A to III-C then detail the individual parts of the
algorithm. Finally, subsection III-D introduces modifications
for the WPCCP.

The algorithm shown in Alg. 1 is motivated by the
bisection method [10]. It starts with the estimation of the
lower and upper bound of the radius (lines 1 and 2). Then,
the bounds are modified by the iterative procedure (lines 3-
10). At each iteration, the interval between the bounds is split
into two halves by computing the midpoint radius (line 4) and
finding the optimal placement of circles with this radius fixed
(line 5). If the found placement is valid, the lower bound is
replaced by the radius (line 7), and the solution is stored. If
the placement is invalid, the upper bound is replaced by the
radius (line 8). The process stops when the upper and lower
bound difference is below the predefined limit. The stored
solution and radius are returned then (line 11).

Algorithm 1: Interval bisection algorithm for the
PCCP/WPCCP.

Input: C – set of cells

1 lb← lower bound()
2 ub← upper bound()
3 while (ub− lb) < ϵ do
4 radius← lb+ub

2
5 (P, valid)← find placement(radius)
6 if valid then
7 lb← radius
8 (Pbest, radiusbest)← (P, radius)
9 else

10 ub← radius

11 return (Pbest, radiusbest)

A. Upper Bound

Circle center ci has to be closer to pi than to any other
point and line segment on P ; otherwise, the circle would
intersect P . The valuable tool for determining possible
positions of circles’ centers satisfying this condition is a
Voronoi diagram (VD): the VD for a set of geometries (points
and line segments in our case) is a partition of the plane into
cells such that each cell contains exactly one input geometry
and all points in the plane are closer to the geometry than
to any other geometry. VD(P), a Voronoi diagram of points
and line segments can be computed by Fortune’s sweepline
algorithm in O(n log(n)) time and use O(n) space [11].

Fig. 3a shows the VD of a path from Fig. 2. Boundaries of
Voronoi cells are formed by points equidistant from two or
more input geometries. Boundary curves between two points
or two segments are segments, while edges between a point
and a segment are parabolic arcs. The center of the largest
circle κi thus lies on a boundary of ith cell, i.e. the cell
VCi containing ith geometry. Moreover, maximal distances
on boundary curves are reached at their end vertices [7].

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on January 05,2024 at 12:42:32 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 8. WHERE TO PLACE A PILE?

117

(a) (b)

Fig. 2: Example solutions of (a) the PCCP, and (b) the WPCCP. The paths (in blue) start at the red points.

Given VC = {VCi}i∈I a set of Voronoi cells containing
points on path P we can thus determine upper bound ub of
(W)PCCP as:

ub = min
i∈I

max
v∈∆(VCi)

|vpi|, (1)

where ∆(VCi) is a set of VCi’s vertices and | · | is the
Euclidean distance. In other words, the radius of the largest
circle touching a point is the distance of the point to the most
distant vertex on its Voronoi cell boundary (see Fig. 3b for
an example). The upper bound is the smallest of these radii.

By contradiction, we prove there is no valid solution with
a radius larger than ub. Assume pm for which |pmcm| = ub.
cm is thus the vertex maximizing the distance in Eq. 1, and
m is the cell index for which this maximum is minimal.
The solution for radius r > ub contains circle Cm(c̄m, r)
associated with pm. As cm is the farthest point of VCm

and c̄m is farther from pm than cm, c̄m lies outside VCm.
There is, therefore, a point or segment on the path closer
to c̄m than to cm, i.e., circle κm(c̄m, r) has a nonempty
intersection with the path. The solution is thus invalid, which
is a contradiction.

B. Lower Bound

We determine lower bound lb by finding some solution.
Assume that a circle center for each cell VCi lies on a ray
αi which bisects the angle formed by pi and two edges of
VCi’s boundary incident to pi as shown in Fig. 3c. For each
pair pi, pj ∈ P, i ̸= j we determine circles’ centers ci, cj
such that:
(1) the centers lie on the bisecting rays: ci ∈ αi and cj ∈ αj ,
(2) the points lie on the circles with the same radius rij :
|pici| = |pjcj | = rij ,

(3) the circles touch: |cicj | = 2rij .
The above conditions lead to a quadratic equation for rij with
one positive solution. Nevertheless, one or both centers can
lie outside the individual cells, making the solution invalid.
The valid radius r̄ij is thus limited:

r̄ij = min{rij , |pixi|, |pjxj |}, (2)

where xi is the intersections of ray αi with δ(VCi), the
boundary of VCi). Similarly, xj = αj ∩ δ(VCj).

The lower bound is the smallest valid radius of all pairs:

lb = min
i∈I,j∈I,i̸=j

r̄ij .

Circle center ci is computed as the intersection of αi with
a circle centered in pi with radius lb.

To prove the validity of the solution constructed by this
procedure, we must ensure that the constraints C1–C4 from
the problem formulation are satisfied. C1 and C2 are met
trivially, and C4 holds as ci lies in VCi due to Eq. 2. C3
is proved by contradiction using the observation that given
two circles touching the same point, a circle with a smaller
radius is entirely inside a circle with a larger radius. This
means that if the smaller circle intersects with another circle,
the larger circle also intersects with the same circle. Assume
now that two circles κi(lb) and κj(lb) with radii lb associated
to some points ci and cj intersect. According to the above
observation, κi(lb) and κj(r̄ij) thus intersect as well as
κi(rij) and κj(rij). This is not possible as |cicj | = 2rij .

C. Placement for a fixed radius

In this section, we describe the algorithm which finds a
valid placement of circles for given radius r or reports that
such placement does not exist. We formulate this problem
as a discrete optimization problem and solve it by a local
search heuristic – an initially generated solution is iteratively
improved by local optimization. Realize that validity of the
initial solution is not guaranteed; thus, the search is done
in the space of all solutions, not only valid ones. Invalid
solutions are penalized in the designed objective function
forcing the solver to find a valid one if it exists.

The algorithm shown in Alg. 2 starts by generating a set of
valid circles’ centers for each Voronoi cell of a point on path
P (lines 1–2). Given cell VCi, the set equals the intersection
of the cell and a circle with radius r centered in pi. To
determine the intersection efficiently, the cell is split into
sectors according to boundary edges as shown in Fig. 4a. The
sectors are processed sequentially in clockwise order. Each
sector is described by two angles – directions of rays starting

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on January 05,2024 at 12:42:32 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 8. WHERE TO PLACE A PILE?

118

(a) (b) (c)

Fig. 3: (a) Voronoi diagram (in gray) of the blue path with highlighted cells of points (in orange). (b) Upper bound
computation: Voronoi cell of pi bounded by closed curve p1v1v2v3p1, circles κ1, κ2, and κ3 going through p1 with centres
v1, v2, and v3, with κ2 the largest one. The dotted lines connect the circles’ centers with the points where the circles touch
the path. (c) Lower bound computation: α1 and α2 are axes of cells associated with pi and pj respectively, si and sj are
centers of largest touching circles.

in pi and passing through endpoints of the boundary edge e.
A sequence of points on circle κ(pi, r) lying in the sector is
generated for each sector. A point from the sequence lies in
VCi iff it is closer to pi than to g, where g is a geometry
(point or edge) that shares the boundary edge e with pi.

The initial solution is generated next (line 3) by selecting
one circle center from each Vi. Preliminary experiments
show that the selection does not influence the solution
quality; we thus simply select the center randomly.

The iterative improvement is made in the loop in lines 4-
11. In each iteration, points on the path are processed in a
random order (lines 8-9). The randomness of the order is
ensured by shuffling the indexes (line 7). When processing
ith point, all circles’ centers are fixed except the ith one
and new ci is selected from Vi that minimizes the designed
objective function (line 9). It consists of two parts.

The first part penalizes candidate centers of circles having
a non-empty intersection with other circles:

f i
int(c) =

∑
k∈I\{i}

(Area(κ(c, r) ∩ κ(ck, r)) + εk), (3)

where

εk =

{
ε if κ(c, r) ∩ κ(ck, r) ̸= ∅
0 otherwise,

ε is a constant (see its meaning bellow), and Area is the area
of circles’ intersection.

Assume the optimal placement according to fint in Fig. 4b
for motivation of the second part. The intersection of κ1 and
κ2 is small but nonempty. Center c1 of circle κ1 is the most
left possible, i.e., in the best position. As the intersection of
κ2 and κ3 is empty, f i

int(c3) = 0 and moving c3 farther from
κ2 does not improve f i

int. Moving c2 farther from κ1 shrinks
κ1–κ2 intersection, but enlarges the intersection of κ2 and
κ3 increasing f i

int in total (notice that c2 is in the optimal
position). The solution is to move c3 to provide space for
moving c2.

The second part of the objective function thus aims to
penalize a circle (a center) with circles in its close vicinity
even if it does not intersect them:

f i
dist(c) =

∑
k∈N

γ(µr − |cck|),

where N = {k|k ∈ I, k ̸= i, |cck| ≤ µr}, µ and γ are
constants. µ specifies the size of the vicinity as the multiple
of r and ensures that f i

dist is non-negative. Even a tiny
intersection of circles should be penalized more than many
non-intersecting circles close to other circles. f i

int should
thus always dominate over f i

dist which is the purpose of γ
and ε from Eq. 3. We set µ = 2.2, ε = 10−5, and γ = 10−10.

The new position of ci minimizes the sum of the two parts:

ci = min
c∈Vi

(f i
int(c) + f i

dist(c)) (4)

The validity of the solution is determined during the eval-
uation of f i

int. Simply, the solution is valid if all intersections
in Eq. 3 are empty.

We monitor whether the position of some center changed
(line 10). If there is no such change during the processing
of the entire path, the iterative process finishes (line 11), and
the algorithm outputs the result (line 12).

Unfortunately, the cost function in Eq. 4 is not convex,
i.e., it can have many local minima. It is thus not guaranteed
that Alg. 2 finds a global optimum or even a valid solution
if it exists. On the other hand, the algorithm is relatively
fast and stochastic. Therefore, we run Alg. 2 several times
to increase the probability of a correct result.

D. Modifications for the WPCCP

The presented algorithm is the same for both PCCP and
WPCCP, with one exception. The difference lies in the way
VCi , an area of possible positions of circles’ centers, is
determined for a given point pi. While a Voronoi diagram
(VD) of points and line segments forming the path is
computed for the PCCP, and the set of possible centers for a

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on January 05,2024 at 12:42:32 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 8. WHERE TO PLACE A PILE?

119

(a) (b)

Fig. 4: (a) Determination of valid circle centers for a given
radius. The orange lines delimit three sections S1, S2, and
S3 of point pi. The black points are valid centers while the
magenta ones are invalid. A center from Sk is valid iff it
is closer to pi than to geometry gk. (b) Situation where the
optimization of fint does not find a valid solution.

Algorithm 2: Local search algorithm for a fixed
radius.

Input: VC – set of Voronoi cells of points on path P
r – radius

Output: ⟨valid,Υ⟩, where Υ = {ci}i∈I

valid – flag whether the solution is valid
Υ = {ci}i∈I – set of circles’ centers

1 foreach i ∈ I do
2 Vi ← VCi ∩ C(pi, r)
3 ci ← random(Vi)
4 repeat
5 modified← false
6 valid← true
7 shuffle(I)
8 foreach i ∈ I do
9 ⟨validi, ci⟩ ← optimal center(Vi)

10 valid← valid ∧ validi
modified← modified ∨ changed(ci)

11 until !modified
12 return ⟨valid,Υ⟩

point is directly its Voronoi cell, the process for the WPCCP
is more complex. The placement of a circle for pi in the
WPCCP is influenced only by points and segments not yet
visited. This means that VCi is a Voronoi cell of pi in the
VD constructed for unvisited points and segments. The naı̈ve
approach to determine VCi for all points is to construct the
VD of relevant geometries for each point and take its Voronoi
cell. The time complexity of this approach is O(n2 log n) as a
single VD is constructed in O(n log n) time. Allen et al. [12]
propose the VD construction algorithm that incrementally
adds new geometries for which the VD is constructed. The
amortized complexity of one such insertion is O(

√
n), and

thus total complexity of constructing all VCi’s is O(n
√
n).

However, we use the naı̈ve approach in our implementation.

IV. EXPERIMENTAL RESULTS

We evaluated the method’s performance for both prob-
lems on two datasets we created for this purpose. The
first dataset consists of 10 instances where the points are
distributed evenly. Specifically, we generated hexagonal grids
of various sizes, took vertices of these grids as cities, and
solved the Travelling Salesman Problem for these cities by
the Concorde solver [13]. The TSP solutions specify the
instances hexaXXX, where XXX is the number of points in
the instance.

The second dataset (instances meshXXX) is generated
similarly, but the points are generated as vertices of a
conforming constrained Delaunay triangulation (CCDT) gen-
erated by [14]. The CCDT distributes points in the plane
randomly but tries to keep some minimal distance between
them. Examples of both datasets are shown in Fig. 5 together
with their solutions.

All experiments were performed within the same com-
putational environment: a notebook with the Intel®Core i5-
8250U CPU@1.6 Ghz. The algorithm has been implemented
in C++. Twenty runs were run for each instance to provide
statistically significant results.

The results are presented in Table I. Each row summarized
values of 20 runs for each instance for both problems. lb and
up are the lower and upper bounds, r, min, max stand for
average, minimal, and maximal found valid radius, σ is the
standard deviation of the radius, and time is computational
time in seconds.

Several observations can be made from the table. First,
the mean radii are closer to the lower bounds than to the
upper bounds. If we set lb = 0% and ub = 100%, the radius
is 10-35% for the PCCP, and 13-37% for the WPCCP. This
suggests that lb is a better estimate of the optimal radius than
ub.

Second, the computational time is two orders higher for
the WPCCP. This is caused mainly by the fact that Voronoi
cells are larger than in the PCCP, and thus more centers have
to be evaluated in Alg.2. Moreover, the convergence of this
algorithm is slower due to a higher number of centers.

Although we run Alg. 2 twenty times, the solutions found
by the solver differ as the values of σ show. The values
are lower for the PCCP, meaning this problem is simpler to
solve. Nevertheless, the deviations are relatively low, even
for the WPCCP.

V. CONCLUSIONS

We study two problems inspired by an open-pit mining
scenario. Contrary to the current approaches, we address
the problems of where to place piles that do not obstruct
a planned trajectory. Together with a heuristic solver for the
problems, we provide upper and lower bounds for a given
instance. The experimental evaluation shows that the solver
finds good solutions for instances of hundreds of piles/circles
in a reasonable time.

While the computational time for the PCCP is sufficient
for real deployment, there is space for improvement for the
WPCCP. We will thus focus on a more efficient generation of

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on January 05,2024 at 12:42:32 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 8. WHERE TO PLACE A PILE?

120

(a) (b)

Fig. 5: Example instances and theirs solutions. (a) PCCP solution of hexa180 (b) WPCCP solution of mesh115.

PCCP WPCCP

problem lb ub r min max σ time lb ub r min max σ time

hexa180 15.00 30.00 17.31 17.31 17.31 0.00 0.50 18.02 103.90 30.66 28.75 31.39 0.64 48.82
hexa240 13.68 27.56 15.62 15.62 15.62 0.00 0.65 16.78 55.14 28.20 26.37 28.77 0.55 60.28
hexa308 12.43 25.00 14.35 14.35 14.35 0.00 0.85 15.02 86.45 24.88 24.14 25.65 0.41 99.93
hexa336 11.75 23.32 13.48 13.47 13.51 0.02 0.93 14.22 80.17 23.73 22.43 24.28 0.47 115.93
hexa416 10.64 21.00 12.23 12.23 12.23 0.00 1.14 13.05 57.95 21.32 20.50 22.00 0.46 134.56
hexa448 9.50 18.75 10.99 10.99 10.99 0.00 1.16 11.52 64.63 19.06 18.12 19.84 0.46 172.08
hexa540 9.50 18.99 10.96 10.96 10.96 0.00 1.50 11.43 65.77 18.63 18.00 19.50 0.41 213.87
hexa576 8.62 17.36 9.90 9.90 9.91 0.00 1.55 10.57 35.34 17.24 16.37 17.82 0.44 196.54
hexa836 7.50 15.00 8.66 8.66 8.66 0.00 2.16 9.04 40.41 14.76 13.93 15.41 0.41 338.74
hexa1144 6.48 13.00 7.37 7.37 7.37 0.00 3.05 7.84 34.95 12.43 11.96 12.92 0.27 413.71
mesh115 14.90 31.04 18.68 18.68 18.68 0.00 0.27 20.72 65.84 34.01 31.75 35.55 1.34 16.82
mesh244 9.25 19.23 10.47 10.29 10.72 0.14 0.37 12.17 38.87 20.22 19.57 20.90 0.49 35.75
mesh268 8.61 19.14 9.95 9.95 9.95 0.00 0.45 11.77 46.47 19.66 17.69 20.62 0.98 54.06
mesh293 7.87 17.87 8.87 8.75 8.96 0.08 0.45 10.98 38.87 17.55 17.07 17.84 0.22 41.52
mesh343 7.78 16.00 8.99 8.94 9.00 0.02 0.42 11.16 45.10 17.40 16.45 18.20 0.56 64.43
mesh374 6.99 14.15 8.76 8.65 8.85 0.06 0.47 9.49 31.50 17.40 16.32 18.11 0.42 66.10
mesh400 7.51 15.98 8.70 8.70 8.70 0.00 0.64 9.72 34.28 15.40 14.70 15.72 0.33 65.52
mesh449 7.06 11.78 8.68 8.66 8.70 0.01 0.45 9.00 26.10 15.32 14.86 15.61 0.18 87.37
mesh686 5.49 12.02 6.47 6.46 6.50 0.01 1.05 6.78 25.22 11.35 11.09 11.82 0.17 112.87
mesh1337 3.51 6.77 4.21 4.20 4.22 0.01 1.21 4.71 17.72 7.85 7.55 8.03 0.12 215.91

TABLE I: Experimental evaluation.

candidate centers in the future. Instead of generating them
equidistantly, new candidates will be generated adaptively
at promising positions based on the cost value of already
evaluated centers.

As Voronoi diagrams can be generated for general ge-
ometries, a natural extension of the problem is to consider
trajectories of other shapes. An interesting example is Du-
bin’s car, for which optimal paths consist of straight lines
and circular turns.

ACKNOWLEDGMENT

The research was supported by Czech Science Foundation
Grant No. 23-05104S. The work of David Woller has also
been supported by the Grant Agency of the Czech Technical
University in Prague, grant No. SGS23/122/
OHK3/2T/13. Masoumeh Mansouri is a UK participant in
Horizon Europe Project CONVINCE, and her work is sup-
ported by UKRI grant number 10042096.

REFERENCES

[1] M. Mansouri, H. Andreasson, and F. Pecora, “Hybrid reasoning
for multi-robot drill planning in open-pit mines,” Acta Polytechnica,

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on January 05,2024 at 12:42:32 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 8. WHERE TO PLACE A PILE?

121

vol. 56, no. 1, pp. 47–56, 2016.
[2] M. Mansouri, F. Lagriffoul, and F. Pecora, “Multi vehicle routing

with nonholonomic constraints and dense dynamic obstacles,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 3522–3529.

[3] S. Carmesin, D. Woller, D. Parker, M. Kulich, and M. Mansouri,
“The hamiltonian cycle and travelling salesperson problems with
traversal-dependent edge deletion,” SSRN Electronic Journal, 2023.
[Online]. Available: https://ssrn.com/abstract=4410404

[4] A. Ullrich, J. Hertzberg, and S. Stiene, “Ros-based path planning and
machine control for an autonomous sugar beet harvester,” in Proceed-
ings of International Conference on Machine Control & Guidance,
(MCG-2014), 2014.

[5] M. I. Shamos, “Computational geometry.” Ph.D. dissertation, Yale
University, 1978.

[6] G. T. Toussaint, “Computing largest empty circles with location
constraints,” International Journal of Computer & Information
Sciences, vol. 12, pp. 347–358, 10 1983. [Online]. Available:
https://link.springer.com/article/10.1007/BF01008046

[7] M. Schuster, “The largest empty circle problem,” in Proceedings of
the Class of 2008 Senior Conference, 2008, pp. 28—-37.

[8] J. Augustine, S. Das, A. Maheshwari, S. C. Nandy, S. Roy,
and S. Sarvattomananda, “Localized geometric query problems,”
Computational Geometry, vol. 46, no. 3, pp. 340–357, 2013.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925772112001198

[9] J. Augustine, B. Putnam, and S. Roy, “Largest empty circle centered
on a query line,” Journal of Discrete Algorithms, vol. 8, no. 2, pp. 143–
153, 2010, selected papers from the 3rd Algorithms and Complexity
in Durham Workshop ACiD 2007. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1570866709000847

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
“Numerical recipes: The art of scientific computing,” in Finding Roots
of Equations. Cambridge University Press, 1992, ch. 9.2, pp. 352–
355.

[11] S. Fortune, “A sweepline algorithm for voronoi diagrams,” in
Proceedings of the Second Annual Symposium on Computational
Geometry, ser. SCG ’86. New York, NY, USA: Association
for Computing Machinery, 1986, p. 313–322. [Online]. Available:
https://doi.org/10.1145/10515.10549

[12] S. R. Allen, L. Barba, J. Iacono, and S. Langerman, “Incremental
Voronoi Diagrams,” Discrete & Computational Geometry, vol. 58,
no. 4, pp. 822–848, 2017. [Online]. Available: https://doi.org/10.
1007/s00454-017-9943-2

[13] D. Applegate, R. Bixby, V. Chvatal, and W. J. Cook, “The Concorde
tsp solver,” http://www.math.uwaterloo.ca/tsp/concorde.html, 2003, ac-
cessed: 2023-05-01.

[14] J. R. Shewchuk, “Delaunay refinement algorithms for triangular
mesh generation,” Computational Geometry, vol. 22, no. 1, pp.
21–74, 2002, 16th ACM Symposium on Computational Geometry.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925772101000475

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on January 05,2024 at 12:42:32 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 8. WHERE TO PLACE A PILE?

122

Chapter 9

Results and Discussion

In this chapter, we summarize the contributions of individual core publications and dis-
cuss future work perspectives. The presented research can be divided into two streams.
In the first stream, represented by the core publications [c1]–[c3], we present problem-
specific metaheuristic algorithms for various problems with permutative representation.
These are real-world problems motivated by a practical robotic application or an interna-
tional competition organized by the operations research community. In the second stream,
represented by the core publications [c4]–[c6], we propose a generic metaheuristic solver
for problems with permutative representation and present the follow-up research.

Problem-specific metaheuristic algorithms

In the first core publication [c1], presented in Chapter 3, we propose a path planning al-
gorithm that ensures the accurate location of radiation sources in a highly specific robotic
application. The main contributions lie in adapting an existing metaheuristic algorithm
GLNS for various specifics of the application, especially exploiting prior knowledge of
source positions and compensating for sensor limits by following a special type of ma-
neuvers along circular arcs. The proposed approach is currently suitable only for robots
capable of in-place rotation. A desirable extension is to plan with different vehicle models,
with a focus on preserving the scalability of the proposed approach.

The second core publication [c2], presented in Chapter 4, is motivated by the IEEE
WCCI competition on the EVRP [27]. In [c2], we propose a GRASP metaheuristic for
the EVRP. This algorithm served as the basis for our VNS metaheuristic for EVRP,
which finished 1st in the competition. The main contribution lies in designing a highly
scalable and computationally efficient metaheuristic algorithm for a novel variant of the
VRP with practical relevance. In terms of future work, the most current goal is to finalize
the publication of the final VNS algorithm [r10], which is in the review process for two
years already, after a major and minor revision.

The last core publication in this stream, [c3] presented in Chapter 5, is motivated
by another international competition - ROADEF Challenge 2020 [28]. The competition
problem, formulated by the RTE company, is a complex optimization problem that ad-
dresses maintenance scheduling of a power transmission network. Our method advanced
to the final competition phase and finished 2nd out of 31 teams in the junior category and
8th out of 74 in the overall ranking. The main contribution lies in adapting the ALNS
metaheuristic for the maintenance scheduling problem and designing a large number of
heuristics and local search operators tailored to the problem. Regarding future work, we
also participated in the next competition run, ROADEF Challenge 2022 [28]. This time,
we designed an ILS metaheuristic algorithm for the 3D truck loading problem, formulated
by the Renault company. We finished 9th out of 51 teams in the overall ranking and 2nd

out of 20 in the junior category again. The method was described in a diploma thesis [s14]
and a journal publication is in preparation.

In summary, there is no shortage of novel, increasingly complex applications that
require the design of custom metaheuristic algorithms. Although the underlying meta-

123

CHAPTER 9. RESULTS AND DISCUSSION

heuristics are well established in the literature, their efficient application requires ex-
ploiting problem-specific properties through the design of specialized components, which
remains an academically interesting area. Within this thesis, we addressed several such
problems with similar structure and designed algorithms that proved to belong between
state of the art. The process of designing these algorithms, however, share common draw-
backs, which are the required expertise and mainly design time, easily spanning several
months.

Generic metaheuristic solver and its applications

Instead of developing yet another specialized solver for a single specific problem, our
focus shifted to developing a more versatile tool, which could be rapidly deployed to a
larger class of similarly structured problems and could be used either in an adequately
challenging application or for prototyping a specialized solver. The second stream of
research presented in this thesis begins with the core publication [c4] in Chapter 6, in which
we propose a generic metaheuristic solver for problems with permutative representation
and a formalism to define such problems easily. The contribution lies in designing a
modular metaheuristic solver that can be applied to a wide class of optimization problems
and does not require the implementation of specialized low-level components. In terms of
scalability, the solver performs better than a similarly general IP Gurobi optimizer, but
naturally lacks behind specialized metaheuristic solvers. The first version of the solver [c4],
initially implemented in [s12], was based on single-solution metaheuristics relying on local
search - VNS and ILS. In the follow-up research, currently presented in [s13], it proved to
be sufficiently scalable but struggling with problems richer in constraints. An alternative
approach based on Adaptive Segregational Constraint Handling Evolutionary Algorithm
(ASCHEA) was proposed and will be further developed and published in the future.

The proposed generic solver was also deployed in the core publication [c5] described in
Chapter 7. It was applied to four newly proposed optimization problems on self-deleting
graphs: HCP-SD, TSP-SD and their relaxed variants, all of which are motivated by an
application in autonomous mining. The main focus of the paper is on proposing the con-
cept of self-deleting graphs, the aforementioned problems, and analyzing their properties
both theoretically and statistically. The generic metaheuristic solver was successfully de-
ployed to the HCP-SD and TSP-SD in a matter of days. It was then used in combination
with a custom exact construction method for statistical analysis on several large datasets
of small to medium-sized instances and was able to solve instances with more than 1000
nodes. Future work is linked to the following core publication.

The last core publication [c6], presented in Chapter 8, addresses a subproblem of
the motivating mining application, which was not tackled in [c5]. We formulated the
Path-Conforming Circle Placement Problem (PCCP), where the goal is to place circular
obstacles of maximal radius along a given tour. In the motivating mining application,
PCCP should be solved simultaneously with TSP-SD, but it cannot be captured by the
formalism proposed in [c4]. Therefore, we proposed a specialized solver for the PCCP
in [c6] and also derived theoretical bounds on the cost of the solution. In the subsequent
work, which is currently under review in [r11], we formulate the Travelling Salesperson
Problem with Circle Placement (TSP-CP), which combines PCCP with TSP-SD and we
propose a new specialized solver that combines the approaches from [c5] and [c6]. We also
propose a new specialized solver for the TSP-SD in [r11], which outperforms the generic
solver used in [c5] in scalability and solution quality, although the latter is better only by
5% on average, given the same computation time.

124

CHAPTER 9. RESULTS AND DISCUSSION

In summary, we proposed a generic metaheuristic solver for problems with permutative
representation and successfully applied it in follow-up research work. Given that the
generic solver can be deployed in days, whereas developing the specialized one may require
several months, it turns out that the generic solver can be a reasonable first choice in many
practical applications.

125

Chapter 10

Conclusion

This thesis is presented as a compilation of six core publications, three of which are
Q2 journal articles, in accordance with requirements of the Faculty of Electrical Engineer-
ing CTU doctoral study code [99]. It addresses the design of metaheuristic algorithms
for combinatorial optimization problems with permutative representation. In the first
three core publications, we propose state of the art metaheuristic algorithms for various
problems from the studied class that are motivated either by a robotic application or by
international competitions. In the remaining three core publications, we propose a generic
metaheuristic solver for problems with permutative representation, apply this solver to
several newly formulated variants of the TSP and HCP on self-deleting graphs and present
some follow-up research in the motivating application, which is autonomous mining. The
generic solver offers scalability that exceeds general-purpose IP solvers and is comparable
to specialized metaheuristic algorithms.

Future work of the presented research lies in multiple directions. In terms of pub-
lication work, two journal articles dedicated to specialized metaheuristic algorithms for
the EVRP [r10] and TSP-CP [r11] are currently in the review process. Another algo-
rithm, successful in ROADEF Challenge 2022 [28], was recently presented in a supervised
diploma thesis [s14] and its publication is also planned. Regarding research work, an
extension of the generic metaheuristic solver enabling more robust constraint handling is
under development and partially presented in a supervised bachelor’s thesis [s13].

126

Chapter A

Author’s publications

All the author’s publications are listed below. Each citation is supplemented with the
author’s contribution percentage and the number of citations according to Web of Science,
Scopus, and Google Scholar. In case of journal publications, the impact factor and journal
quartile ranking according to the Journal Citation Reports are also stated. The thesis
core publications are referenced as [c*], other author’s thesis-related publications are
referenced as [r*], and the thesis supervised by the author as [s*]. The data presented are
current to March 22, 2024. Finally, the logical continuity of all publications is visualized
in Figure A.1.

[r7] LNS for radiation search
diploma thesis, 2019

[c1] LNS for radiation search
Applied Intelligence, 2022

[c2] GRASP for EVRP
MESAS conference, 2020

[r8] Constructors for EVRP
MESAS conference, 2020

[r10] VNS for EVRP
Operational Research

[c3] ALNS for ROADEF 2020
Journal of Heuristics, 2023

[c5] TSP, HCP on Self-deleting graphs
Journal of Computational Science, 2023

[c4] generic metaheuristic solver
ICO conference, 2023

[c6] Path-Conforming Circle Placement
ECMR conference, 2023

[r9] ALNS for ROADEF 2020
ICINCO conference, 2021

[r11] TSP with Circle Placement
Transaction on Robotics

[s12] generic metaheuristic solver
supervised diploma thesis, 2022

[s12] generic metaheuristic solver (ASCHEA)
supervised bachelor thesis, 2023

[s14] ILS for ROADEF 2022
supervised diploma thesis, 2023

core publications

related publications

in review

supervised theses

extension

application

motivation

future work

Figure A.1: Logical continuity of all author’s publications and supervised thesis

127

A.1. THESIS CORE PUBLICATIONS APPENDIX A. AUTHOR’S PUBLICATIONS

A.1 Thesis core publications

Journal Publications

[c1] Woller, D., Kulich, M., “Path planning algorithm ensuring accurate localization
of radiation sources”, Applied Intelligence, pp. 1–23, 2022, issn: 15737497. doi:
10.1007/S10489- 021- 02941- Y, 70% contribution, IF 5.3 (Q2 in Com-
puter Science, Artificial Intelligence), citations: 1 in Web of Science, 1
in Scopus, 2 in Google Scholar.

[c3] Woller, D., Rada, J., Kulich, M., “The ALNS metaheuristic for the transmission
maintenance scheduling”, Journal of Heuristics, vol. 29, no. 2-3, pp. 349–382, 2023.
doi: 10.1007/s10732-023-09514-x, 70% contribution, IF 2.7 (Q2 in Com-
puter Science, Theory & Methods), citations: 1 in Web of Science, 1 in
Scopus, 1 in Google Scholar.

[c5] Carmesin, S., Woller, D., Parker, D., Kulich, M., Mansouri, M., “The Hamil-
tonian Cycle and Travelling Salesperson problems with traversal-dependent edge
deletion”, Journal of Computational Science, vol. 74, p. 102 156, 2023, issn: 1877-
7503. doi: 10.1016/j.jocs.2023.102156, 20% contribution, IF 3.3 (Q2 in
Computer Science, Theory & Methods), citations: 0 in Web of Science,
1 in Scopus, 1 in Google Scholar.

Conference publications

[c2] Woller, D., Kozák, V., Kulich, M., “The GRASP Metaheuristic for the Electric
Vehicle Routing Problem”, English, in Modelling and Simulation for Autonomous
Systems, ser. 1, Cham, CH: Springer, 2020. doi: 10.1007/978-3-030-70740-
8_12, 50% contribution, citations: 0 in Web of Science, 1 in Scopus, 4 in
Google Scholar.

[c4] Woller, D., Hrazd́ıra, J., Kulich, M., “Metaheuristic Solver for Problems with
Permutative Representation”, in Intelligent Computing & Optimization, Springer
International Publishing, 2023, pp. 42–54, isbn: 978-3-031-19958-5. doi: 10.1007/
978-3-031-19958-5_5, 50% contribution, citations: 0 in Web of Science,
0 in Scopus, 1 in Google Scholar.

[c6] Kulich, M., Woller, D., Carmesin, S., Mansouri, M., Přeučil, L., “Where to Place
a Pile?”, in 2023 European Conference on Mobile Robots (ECMR), IEEE, 2023.
doi: 10.1109/ecmr59166.2023.10256330, 20% contribution, citations: 0 in
Web of Science, 0 in Scopus, 0 in Google Scholar.

A.2 Related publications

[r7] Woller, D., Search for sources of gamma radiation, master thesis, Czech Technical
University in Prague, 2019. https://dspace.cvut.cz/handle/10467/83422.

128

https://doi.org/10.1007/S10489-021-02941-Y
https://doi.org/10.1007/s10732-023-09514-x
https://doi.org/10.1016/j.jocs.2023.102156
https://doi.org/10.1007/978-3-030-70740-8_12
https://doi.org/10.1007/978-3-030-70740-8_12
https://doi.org/10.1007/978-3-031-19958-5_5
https://doi.org/10.1007/978-3-031-19958-5_5
https://doi.org/10.1109/ecmr59166.2023.10256330
https://dspace.cvut.cz/handle/10467/83422

A.3. SUPERVISED THESES APPENDIX A. AUTHOR’S PUBLICATIONS

[r8] Kozák, V., Woller, D., Vávra, V., Kulich, M., “Initial Solution Constructors for
Capacitated Green Vehicle Routing Problem”, English, in Modelling and Simula-
tion for Autonomous Systems, ser. 1, Cham, CH: Springer, 2020. doi: 10.1007/
978-3-030-70740-8_16, 30% contribution, citations: 0 in Web of Science,
1 in Scopus, 2 in Google Scholar.

[r9] Woller, D., Kulich, M., “The ALNS Metaheuristic for the Maintenance Schedul-
ing Problem”, in Proceedings of the 18th International Conference on Informat-
ics in Control, Automation and Robotics - ICINCO, INSTICC, SciTePress, 2021,
pp. 156–164, isbn: 978-989-758-522-7. doi: 10.5220/0010552101560164, 70%
contribution, citations: 1 in Web of Science, 1 in Scopus, 3 in Google
Scholar.

[r10] Woller, D., Kozák, V., Kulich, M., “Variable Neighborhood Search for the Electric
Vehicle Routing Problem”, under review at Operational Research - An Interna-
tional Journal (ORIJ).

[r11] Woller, D., Mansouri, M., Kulich, M., “Making a Mess and Getting Away with it:
Traveling Salesperson Problem with Circle Placement for Dubins Vehicles”, under
review at IEEE Transactions on Robotics (T-RO).

A.3 Supervised theses

[s12] Hrazd́ıra, J., Metaheuristic Algorithms for Optimization Problems Sharing Rep-
resentation, master thesis, Czech Technical University in Prague, 2022. https:
//dspace.cvut.cz/handle/10467/102112.

[s13] Pažout, D., Evolutionary Algorithms for Optimization Problems with Permuta-
tive Representation, bachelor thesis, Czech Technical University in Prague, 2023.
https://dspace.cvut.cz/handle/10467/108749.

[s14] Hromada, T., ROADEF Challenge 2022: Optimization of truck fleet loading, master
thesis, Czech Technical University in Prague, 2023. https://dspace.cvut.cz/
handle/10467/109463.

129

https://doi.org/10.1007/978-3-030-70740-8_16
https://doi.org/10.1007/978-3-030-70740-8_16
https://doi.org/10.5220/0010552101560164
https://dspace.cvut.cz/handle/10467/102112
https://dspace.cvut.cz/handle/10467/102112
https://dspace.cvut.cz/handle/10467/108749
https://dspace.cvut.cz/handle/10467/109463
https://dspace.cvut.cz/handle/10467/109463

Bibliography

[15] Schrijver, A., “On the History of Combinatorial Optimization (Till 1960)”, in Dis-
crete Optimization, ser. Handbooks in Operations Research and Management Sci-
ence, K. Aardal, G. Nemhauser, and R. Weismantel, Eds., vol. 12, Elsevier, 2005,
pp. 1–68. doi: 10.1016/S0927-0507(05)12001-5. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0927050705120015.

[16] Kuhn, H. W., “Variants of the Hungarian method for assignment problems”, Naval
research logistics quarterly, vol. 3, no. 4, pp. 253–258, 1956.

[17] Chandrashekar, G., Sahin, F., “A survey on feature selection methods”, Comput-
ers & Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014, 40th-year commem-
orative issue, issn: 0045-7906. doi: 10.1016/j.compeleceng.2013.11.024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0045790613003066.

[18] Braekers, K., Ramaekers, K., Van Nieuwenhuyse, I., “The vehicle routing problem:
State of the art classification and review”, Computers & Industrial Engineering,
vol. 99, pp. 300–313, 2016, issn: 0360-8352. doi: 10.1016/j.cie.2015.12.007.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0360835215004775.

[19] Gunjan, A., Bhattacharyya, S., “A brief review of portfolio optimization tech-
niques”, Artificial Intelligence Review, vol. 56, no. 5, 3847–3886, Sep. 2022, issn:
1573-7462. doi: 10.1007/s10462-022-10273-7. [Online]. Available: http://dx.
doi.org/10.1007/s10462-022-10273-7.

[20] Macharet, D. G., Campos, M. F. M., “A survey on routing problems and robotic
systems”, Robotica, vol. 36, no. 12, 1781–1803, 2018. doi: 10.1017/S02635747180-
00735.

[21] Wolsey, L., “Well-Solved Problems”, in Integer Programming, John Wiley & Sons,
Ltd, 2020, pp. 43–62. doi: 10.1002/9781119606475.ch3. [Online]. Available:
https://onlinelibrary.wiley.com/doi/full/10.1002/9781119606475.ch3.

[22] Christophides, N. “Worst-case Analysis of a New Heuristic for the Travelling Sales-
man Problem”, in Proceedings of Symposium on New Directions and Recent Results
in Algorithms and Complexity, 1976. [Online]. Available: https://ci.nii.ac.jp/
naid/10006934449.

[23] Gurobi Optimizer, https://www.gurobi.com/solutions/gurobi-optimizer/,
Accessed: March 22, 2024.

[24] IBM ILOG CPLEX Optimizer, https://www.ibm.com/products/ilog-cplex-
optimization-studio/cplex-optimizer, Accessed: March 22, 2024.

[25] FICO Xpress Optimization, https : / / www . fico . com / en / products / fico -

xpress-optimization, Accessed: March 22, 2024.

130

https://doi.org/10.1016/S0927-0507(05)12001-5
https://www.sciencedirect.com/science/article/pii/S0927050705120015
https://www.sciencedirect.com/science/article/pii/S0927050705120015
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://www.sciencedirect.com/science/article/pii/S0045790613003066
https://www.sciencedirect.com/science/article/pii/S0045790613003066
https://doi.org/10.1016/j.cie.2015.12.007
https://www.sciencedirect.com/science/article/pii/S0360835215004775
https://www.sciencedirect.com/science/article/pii/S0360835215004775
https://doi.org/10.1007/s10462-022-10273-7
http://dx.doi.org/10.1007/s10462-022-10273-7
http://dx.doi.org/10.1007/s10462-022-10273-7
https://doi.org/10.1017/S02635747180-00735
https://doi.org/10.1017/S02635747180-00735
https://doi.org/10.1002/9781119606475.ch3
https://onlinelibrary.wiley.com/doi/full/10.1002/9781119606475.ch3
https://ci.nii.ac.jp/naid/10006934449
https://ci.nii.ac.jp/naid/10006934449
https://www.gurobi.com/solutions/gurobi-optimizer/
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization

BIBLIOGRAPHY BIBLIOGRAPHY

[26] Carles, C., Esquirol, Y., Turuban, M., “Residential proximity to power lines and
risk of brain tumor in the general population”, Environmental Research, vol. 185,
p. 109 473, 2020, issn: 0013-9351. doi: 10.1016/j.envres.2020.109473. [Online].
Available: http://dx.doi.org/10.1016/j.envres.2020.109473.

[27] Mavrovouniotis, M., IEEE WCCI 2020: Competition on Electric Vehicle Routing
Problem, https://mavrovouniotis.github.io/EVRPcompetition2020/, Ac-
cessed: March 22, 2024.

[28] ROADEF Challenge website, https://www.roadef.org/challenge/, Accessed:
March 22, 2024.

[29] Salienko, E., Mining drilling machine stock photo, https://www.shutterstock.
com/cs/image- photo/mining- drilling- machine- drills- wells- slate-

1768699433, Accessed: March 22, 2024, 2023.

[30] Sörensen, K., Sevaux, M., Glover, F., “A history of metaheuristics”, in Handbook
of Heuristics, vol. 2-2, Springer, 2018, pp. 791–808, isbn: 9783319071244. doi:
10.1007/978-3-319-07124-4_4. arXiv: 1704.00853. [Online]. Available: https:
//doi.org/10.1007/978-3-319-07124-4_4.

[31] Sollin, M, “La trace de canalisation”, Programming, Games, and Transportation
Networks, 1965.

[32] Prim, R. C., “Shortest Connection Networks And Some Generalizations”, Bell
System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957, issn: 15387305.
doi: 10.1002/j.1538-7305.1957.tb01515.x.

[33] Rechenberg, I., “Evolution Strategy: Nature’s Way of Optimization”, in Optimiza-
tion: Methods and Applications, Possibilities and Limitations, Springer, Berlin,
Heidelberg, 1989, pp. 106–126. doi: 10.1007/978-3-642-83814-9_6. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-642-83814-
9_6.

[34] Holland, J. H., Adaptation in natural and artificial systems: an introductory analy-
sis with applications to biology, control, and artificial intelligence. MIT press, 1992.

[35] Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., “Optimization by simulated anneal-
ing”, Science, vol. 220, no. 4598, pp. 671–680, 1983, issn: 00368075. doi: 10.1126/
science.220.4598.671. [Online]. Available: https://www.science.org/doi/
abs/10.1126/science.220.4598.671.

[36] Glover, F., “Future paths for integer programming and links to artificial intelli-
gence”, Computers and Operations Research, vol. 13, no. 5, pp. 533–549, 1986,
issn: 03050548. doi: 10.1016/0305-0548(86)90048-1.

[37] Muklason, A., Irianti, R. G., Marom, A., “Automated Course Timetabling Opti-
mization Using Tabu-Variable Neighborhood Search Based Hyper-Heuristic Algo-
rithm”, Procedia Computer Science, vol. 161, pp. 656–664, 2019, The Fifth Infor-
mation Systems International Conference, 23-24 July 2019, Surabaya, Indonesia,
issn: 1877-0509. doi: 10.1016/j.procs.2019.11.169. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1877050919318800.

[38] Colorni, A., Dorigo, M., Maniezzo, V., “Distributed Optimization by ant colonies”,
in Proceedings of the First European Conference on Artificial Life, 1991, pp. 134–
142.

131

https://doi.org/10.1016/j.envres.2020.109473
http://dx.doi.org/10.1016/j.envres.2020.109473
https://mavrovouniotis.github.io/EVRPcompetition2020/
https://www.roadef.org/challenge/
https://www.shutterstock.com/cs/image-photo/mining-drilling-machine-drills-wells-slate-1768699433
https://www.shutterstock.com/cs/image-photo/mining-drilling-machine-drills-wells-slate-1768699433
https://www.shutterstock.com/cs/image-photo/mining-drilling-machine-drills-wells-slate-1768699433
https://doi.org/10.1007/978-3-319-07124-4_4
https://arxiv.org/abs/1704.00853
https://doi.org/10.1007/978-3-319-07124-4_4
https://doi.org/10.1007/978-3-319-07124-4_4
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1007/978-3-642-83814-9_6
https://link.springer.com/chapter/10.1007/978-3-642-83814-9_6
https://link.springer.com/chapter/10.1007/978-3-642-83814-9_6
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1016/j.procs.2019.11.169
https://www.sciencedirect.com/science/article/pii/S1877050919318800
https://www.sciencedirect.com/science/article/pii/S1877050919318800

BIBLIOGRAPHY BIBLIOGRAPHY

[39] Jia, Y. H., Mei, Y., Zhang, M., “A Bilevel Ant Colony Optimization Algorithm for
Capacitated Electric Vehicle Routing Problem”, IEEE Transactions on Cybernet-
ics, 2021, issn: 21682275. doi: 10.1109/TCYB.2021.3069942.

[40] Baxter, J., “Local optima avoidance in depot location”, Journal of the Operational
Research Society, vol. 32, no. 9, pp. 815–819, 1981, issn: 14769360. doi: 10.1057/
jors.1981.159. [Online]. Available: https://www.tandfonline.com/doi/abs/
10.1057/jors.1981.159.

[41] Vasquez, M., Buljubasic, M., Hanafi, S., “An efficient scenario penalization matheu-
ristic for a stochastic scheduling problem”, Journal of Heuristics, vol. 29, no. 2–3,
383–408, 2023, issn: 1572-9397. doi: 10.1007/s10732-023-09513-y. [Online].
Available: http://dx.doi.org/10.1007/s10732-023-09513-y.

[42] Gu, H., Lam, H. C., Pham, T. T. T., Zinder, Y., “Heuristics and meta-heuristic to
solve the ROADEF/EURO challenge 2020 maintenance planning problem”, Jour-
nal of Heuristics, vol. 29, no. 1, 139–175, 2023, issn: 1572-9397. doi: 10.1007/
s10732- 022- 09508- 1. [Online]. Available: http://dx.doi.org/10.1007/
s10732-022-09508-1.

[43] Mladenović, N., Hansen, P., “Variable neighborhood search”, Computers and Op-
erations Research, vol. 24, no. 11, pp. 1097–1100, 1997, issn: 03050548. doi: 10.
1016/S0305-0548(97)00031-2.

[44] IMR: Intelligent and Mobile Robotics Laboratory, CIIRC, CTU in Prague, http:
//imr.ciirc.cvut.cz/, Accessed: March 22, 2024.

[45] Zahradka, D., Andreychuk, A., Kulich, M., Yakovlev, K., “Quality Analysis of
Multi-Agent Multi-Item Pickup and Delivery Solutions Using a Decoupled Ap-
proach”, IFAC-PapersOnLine, vol. 55, no. 38, pp. 61–66, 2022, 13th IFAC Sympo-
sium on Robot Control SYROCO 2022, issn: 2405-8963. doi: 10.1016/j.ifacol.
2023.01.134. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2405896323001416.

[46] Zahrádka, D., Kubǐsta, D., Kulich, M., “Solving Robust Execution of Multi-Agent
Pathfinding Plans as a Scheduling Problem (PlanRob 2023 workshop at ICAPS)”,

[47] Mikula, J., Kulich, M., “Solving the traveling delivery person problem with limited
computational time”, Central European Journal of Operations Research, vol. 30,
no. 4, 1451–1481, Jan. 2022, issn: 1613-9178. doi: 10.1007/s10100-021-00793-y.
[Online]. Available: http://dx.doi.org/10.1007/s10100-021-00793-y.

[48] Feo, T. A., Resende, M. G., “Greedy Randomized Adaptive Search Procedures”,
Journal of Global Optimization, vol. 6, no. 2, pp. 109–133, 1995, issn: 09255001.
doi: 10.1007/BF01096763. [Online]. Available: https://link.springer.com/
article/10.1007/BF01096763.

[49] Parreño, F., Parreño-Torres, C., Alvarez-Valdes, R., “A matheuristic algorithm
for the maintenance planning problem at an electricity transmission system op-
erator”, Expert Systems with Applications, vol. 230, p. 120 583, 2023, issn: 0957-
4174. doi: 10.1016/j.eswa.2023.120583. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0957417423010850.

132

https://doi.org/10.1109/TCYB.2021.3069942
https://doi.org/10.1057/jors.1981.159
https://doi.org/10.1057/jors.1981.159
https://www.tandfonline.com/doi/abs/10.1057/jors.1981.159
https://www.tandfonline.com/doi/abs/10.1057/jors.1981.159
https://doi.org/10.1007/s10732-023-09513-y
http://dx.doi.org/10.1007/s10732-023-09513-y
https://doi.org/10.1007/s10732-022-09508-1
https://doi.org/10.1007/s10732-022-09508-1
http://dx.doi.org/10.1007/s10732-022-09508-1
http://dx.doi.org/10.1007/s10732-022-09508-1
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/S0305-0548(97)00031-2
http://imr.ciirc.cvut.cz/
http://imr.ciirc.cvut.cz/
https://doi.org/10.1016/j.ifacol.2023.01.134
https://doi.org/10.1016/j.ifacol.2023.01.134
https://www.sciencedirect.com/science/article/pii/S2405896323001416
https://www.sciencedirect.com/science/article/pii/S2405896323001416
https://doi.org/10.1007/s10100-021-00793-y
http://dx.doi.org/10.1007/s10100-021-00793-y
https://doi.org/10.1007/BF01096763
https://link.springer.com/article/10.1007/BF01096763
https://link.springer.com/article/10.1007/BF01096763
https://doi.org/10.1016/j.eswa.2023.120583
https://www.sciencedirect.com/science/article/pii/S0957417423010850
https://www.sciencedirect.com/science/article/pii/S0957417423010850

BIBLIOGRAPHY BIBLIOGRAPHY

[50] Zahradka, D., Mikula, J., Kulich, M., “A Metaheuristic Approach for Inspection
and Reconnaissance of Organized Areas”, in Modelling and Simulation for Au-
tonomous Systems, J. Mazal, A. Fagiolini, P. Vaš́ık, et al., Eds., Cham: Springer
International Publishing, 2023, pp. 44–63, isbn: 978-3-031-31268-7.

[51] Shaw, P., “Using constraint programming and local search methods to solve ve-
hicle routing problems”, in Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 1520, Springer, Berlin, Heidelberg, 1998, pp. 417–431, isbn: 3540652248. doi:
10.1007/3-540-49481-2_30.

[52] Stützle, T., Ruiz, R., “Iterated greedy”, inHandbook of Heuristics, vol. 1-2, Springer,
Cham, 2018, pp. 547–577, isbn: 9783319071244. doi: 10.1007/978-3-319-07124-
4_10. [Online]. Available: https://link.springer.com/referenceworkentry/
10.1007/978-3-319-07124-4_10.

[53] Smith, S. L., Imeson, F., “GLNS: An Effective Large Neighborhood Search Heuris-
tic for the Generalized Traveling Salesman Problem”, Computers & Operations
Research, vol. 87, pp. 1–19, 2017.

[54] Mikula, J., Kulich, M., “Towards a Continuous Solution of the d-Visibility Watch-
man Route Problem in a Polygon With Holes”, IEEE Robotics and Automation
Letters, vol. 7, no. 3, pp. 5934–5941, 2022. doi: 10.1109/LRA.2022.3159824.

[55] Kulich, M., Vidašič, J., Mikula, J., “On the Travelling Salesman Problem with Neigh-
borhoods in a Polygonal World”, in Robotics in Natural Settings, J. M. Cascalho,
M. O. Tokhi, M. F. Silva, A. Mendes, K. Goher, and M. Funk, Eds., Cham: Springer
International Publishing, 2023, pp. 334–345, isbn: 978-3-031-15226-9.

[56] Sörensen, K., “Metaheuristics-the metaphor exposed”, International Transactions
in Operational Research, vol. 22, no. 1, pp. 3–18, 2015, issn: 14753995. doi: 10.
1111/itor.12001. [Online]. Available: https://onlinelibrary.wiley.com/
doi/full/10.1111/itor.12001.

[57] Moscato, P., Cotta, C., “An accelerated introduction to memetic algorithms”, in
International Series in Operations Research and Management Science, vol. 272,
Springer New York LLC, 2019, pp. 275–309. doi: 10.1007/978-3-319-91086-
4_9.

[58] Fischetti, M., Fischetti, M., “Matheuristics”, in Handbook of Heuristics, Springer,
Cham, 2016, pp. 1–33. doi: 10.1007/978- 3- 319- 07153- 4_14- 1. [Online].
Available: https://link.springer.com/referenceworkentry/10.1007/978-3-
319-07153-4_14-1.

[59] Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J. R.,
“A Classification of Hyper-heuristic Approaches”, in Handbook of Metaheuristics,
Springer, Boston, MA, 2010, pp. 449–468. doi: 10.1007/978-1-4419-1665-5_15.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-1-
4419-1665-5_15.

[60] Dantzig, G. B., Orden, A., Wolfe, P., “The generalized simplex method for mini-
mizing a linear form under linear inequality restraints”, Pacific Journal of Mathe-
matics, vol. 5, no. 2, pp. 183–195, 1955, issn: 00308730. doi: 10.2140/pjm.1955.
5.183.

133

https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1007/978-3-319-07124-4_10
https://doi.org/10.1007/978-3-319-07124-4_10
https://link.springer.com/referenceworkentry/10.1007/978-3-319-07124-4_10
https://link.springer.com/referenceworkentry/10.1007/978-3-319-07124-4_10
https://doi.org/10.1109/LRA.2022.3159824
https://doi.org/10.1111/itor.12001
https://doi.org/10.1111/itor.12001
https://onlinelibrary.wiley.com/doi/full/10.1111/itor.12001
https://onlinelibrary.wiley.com/doi/full/10.1111/itor.12001
https://doi.org/10.1007/978-3-319-91086-4_9
https://doi.org/10.1007/978-3-319-91086-4_9
https://doi.org/10.1007/978-3-319-07153-4_14-1
https://link.springer.com/referenceworkentry/10.1007/978-3-319-07153-4_14-1
https://link.springer.com/referenceworkentry/10.1007/978-3-319-07153-4_14-1
https://doi.org/10.1007/978-1-4419-1665-5_15
https://link.springer.com/chapter/10.1007/978-1-4419-1665-5_15
https://link.springer.com/chapter/10.1007/978-1-4419-1665-5_15
https://doi.org/10.2140/pjm.1955.5.183
https://doi.org/10.2140/pjm.1955.5.183

BIBLIOGRAPHY BIBLIOGRAPHY

[61] Dikin, I. I., “Iterative solution of problems of linear and quadratic programming”,
English, Soviet Mathematics - Doklady, vol. 8, pp. 674–675, 1967, issn: 0197-6788.

[62] Spielman, D. A., Teng, S. H., “Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time”, Journal of the ACM, vol. 51, no. 3,
pp. 385–463, 2004, issn: 00045411. doi: 10.1145/990308.990310. arXiv: 0111050
[cs]. [Online]. Available: https://arxiv.org/abs/cs/0111050v7.

[63] Karmarkar, N., “A new polynomial-time algorithm for linear programming”, Com-
binatorica, vol. 4, no. 4, pp. 373–395, 1984, issn: 02099683. doi: 10.1007/BF0257-
9150.

[64] Land, A. H., Doig, A. G., “An Automatic Method of Solving Discrete Programming
Problems”, Econometrica, vol. 28, no. 3, p. 497, 1960, issn: 00129682. doi: 10.
2307/1910129.

[65] Gilmore, P. C., Gomory, R. E., “A Linear Programming Approach to the Cutting-
Stock Problem”, Operations Research, vol. 9, no. 6, pp. 849–859, 1961, issn: 0030-
364X. doi: 10.1287/opre.9.6.849.

[66] Mitchell, J. E., “Branch-and-Cut Algorithms for Combinatorial Optimization Prob-
lems”, Handbook of Applied Optimization, pp. 65–77, 2002.

[67] Atamtürk, A., Nemhauser, G. L., Savelsbergh, M. W., “Conflict graphs in solv-
ing integer programming problems”, European Journal of Operational Research,
vol. 121, no. 1, pp. 40–55, 2000, issn: 03772217. doi: 10.1016/S0377-2217(99)
00015-6.

[68] Sherali, H. D., Glover, F., “Higher-order cover cuts from zero-one knapsack con-
straints augmented by two-sided bounding inequalities”, Discrete Optimization,
vol. 5, no. 2, pp. 270–289, 2008, issn: 15725286. doi: 10.1016/j.disopt.2007.
02.002.

[69] Letchford, A. N., “On Disjunctive Cuts for Combinatorial Optimization”, Journal
of Combinatorial Optimization, vol. 5, no. 3, pp. 299–315, 2001, issn: 13826905.
doi: 10.1023/A:1011493126498. [Online]. Available: https://link.springer.
com/article/10.1023/A:1011493126498.

[70] Gu, Z., Nemhauser, G. L., Savelsbergh, M. W., “Lifted flow cover inequalities
for mixed 0-1 integer programs”, Mathematical Programming, Series B, vol. 85,
no. 3, pp. 439–467, 1999, issn: 00255610. doi: 10.1007/s101070050067. [Online].
Available: https://link.springer.com/article/10.1007/s101070050067.

[71] Marchand, H., Martin, A., Weismantel, R., Wolsey, L., “Cutting planes in integer
and mixed integer programming”, Discrete Applied Mathematics, vol. 123, no. 1-3,
pp. 397–446, 2002, issn: 0166218X. doi: 10.1016/S0166-218X(01)00348-1.

[72] Ausiello, G., Marchetti-Spaccamela, A., Crescenzi, P., Gambosi, G., Protasi, M.,
Kann, V., “Approximation Preserving Reductions”, in Complexity and Approxi-
mation, Springer, Berlin, Heidelberg, 1999, pp. 253–286. doi: 10.1007/978-3-
642-58412-1_8. [Online]. Available: https://link.springer.com/chapter/10.
1007/978-3-642-58412-1_8.

[73] Helsgaun, K., “An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Con-
strained Traveling Salesman and Vehicle Routing Problems”, Roskilde University,
Tech. Rep., 2017. doi: 10.13140/RG.2.2.25569.40807.

134

https://doi.org/10.1145/990308.990310
https://arxiv.org/abs/0111050
https://arxiv.org/abs/0111050
https://arxiv.org/abs/cs/0111050v7
https://doi.org/10.1007/BF0257-9150
https://doi.org/10.1007/BF0257-9150
https://doi.org/10.2307/1910129
https://doi.org/10.2307/1910129
https://doi.org/10.1287/opre.9.6.849
https://doi.org/10.1016/S0377-2217(99)00015-6
https://doi.org/10.1016/S0377-2217(99)00015-6
https://doi.org/10.1016/j.disopt.2007.02.002
https://doi.org/10.1016/j.disopt.2007.02.002
https://doi.org/10.1023/A:1011493126498
https://link.springer.com/article/10.1023/A:1011493126498
https://link.springer.com/article/10.1023/A:1011493126498
https://doi.org/10.1007/s101070050067
https://link.springer.com/article/10.1007/s101070050067
https://doi.org/10.1016/S0166-218X(01)00348-1
https://doi.org/10.1007/978-3-642-58412-1_8
https://doi.org/10.1007/978-3-642-58412-1_8
https://link.springer.com/chapter/10.1007/978-3-642-58412-1_8
https://link.springer.com/chapter/10.1007/978-3-642-58412-1_8
https://doi.org/10.13140/RG.2.2.25569.40807

BIBLIOGRAPHY BIBLIOGRAPHY

[74] Vidal, T., Crainic, T. G., Gendreau, M., Prins, C., “A unified solution framework
for multi-attribute vehicle routing problems”, European Journal of Operational
Research, vol. 234, no. 3, pp. 658–673, 2014, issn: 03772217. doi: 10.1016/j.
ejor.2013.09.045.

[75] Whitley, D., Yoo, N.-W., “Modeling Simple Genetic Algorithms for Permutation
Problems”, in Foundations of Genetic Algorithms, L. D. WHITLEY and M. D.
VOSE, Eds., vol. 3, Elsevier, 1995, pp. 163–184. doi: 10.1016/B978-1-55860-
356 - 1 . 50013 - 3. [Online]. Available: https : / / www . sciencedirect . com /

science/article/pii/B9781558603561500133.

[76] Koohestani, B., “A crossover operator for improving the efficiency of permutation-
based genetic algorithms”, Expert Systems with Applications, vol. 151, p. 113 381,
2020, issn: 0957-4174. doi: 10.1016/j.eswa.2020.113381. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417420302050.

[77] Mehdi, M., “Parallel Hybrid Optimization Methods for Permutation Based Prob-
lems”, Ph.D. dissertation, Université des Sciences et Technologie de Lille - Lille
I, 2011. [Online]. Available: https://www.researchgate.net/publication/
281015427 _ PARALLEL _ HYBRID _ OPTIMIZATION _ METHODS _ FOR _ PERMUTATION _

BASED_PROBLEMS.

[78] Dreo, J., Liefooghe, A., Verel, S., “Paradiseo: From a modular framework for evo-
lutionary computation to the automated design of metaheuristics: 22 years of Par-
adiseo”, in GECCO 2021 Companion - Proceedings of the 2021 Genetic and Evo-
lutionary Computation Conference Companion, Association for Computing Ma-
chinery, Inc, 2021, pp. 1522–1530, isbn: 9781450383516. doi: 10.1145/3449726.
3463276. arXiv: 2105.00420.

[79] Parejo, J. A., Ruiz-Cortés, A., Lozano, S., Fernandez, P., “Metaheuristic optimiza-
tion frameworks: A survey and benchmarking”, Soft Computing, vol. 16, no. 3,
pp. 527–561, 2012, issn: 14327643. doi: 10.1007/s00500-011-0754-8. [Online].
Available: https://link.springer.com/article/10.1007/s00500-011-0754-
8.

[80] Scott, E. O., Luke, S., “ECJ at 20: Toward a general metaheuristics toolkit”,
in GECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary
Computation Conference Companion, ACM, 2019, pp. 1391–1398, isbn: 978145036-
7486. doi: 10.1145/3319619.3326865. [Online]. Available: https://doi.org/
10.1145/3319619.3326865.

[81] Hadka, D., Reed, P. M., Simpson, T. W., “Diagnostic assessment of the borg MOEA
for many-objective product family design problems”, in 2012 IEEE Congress on
Evolutionary Computation, CEC 2012, 2012, isbn: 9781467315098. doi: 10.1109/
CEC.2012.6256466.

[82] De Beukelaer, H., Davenport, G. F., De Meyer, G., Fack, V., “JAMES: An object-
oriented Java framework for discrete optimization using local search metaheuris-
tics”, Software - Practice and Experience, vol. 47, no. 6, pp. 921–938, 2017, issn:
1097024X. doi: 10.1002/spe.2459. [Online]. Available: https://onlinelibrary.
wiley.com/doi/full/10.1002/spe.2459.

[83] CEITEC: Central European Institute of Technology, VUT in Brno, https://www.
ceitec.eu/cybernetics-and-robotics/rg390, Accessed: March 22, 2024.

135

https://doi.org/10.1016/j.ejor.2013.09.045
https://doi.org/10.1016/j.ejor.2013.09.045
https://doi.org/10.1016/B978-1-55860-356-1.50013-3
https://doi.org/10.1016/B978-1-55860-356-1.50013-3
https://www.sciencedirect.com/science/article/pii/B9781558603561500133
https://www.sciencedirect.com/science/article/pii/B9781558603561500133
https://doi.org/10.1016/j.eswa.2020.113381
https://www.sciencedirect.com/science/article/pii/S0957417420302050
https://www.researchgate.net/publication/281015427_PARALLEL_HYBRID_OPTIMIZATION_METHODS_FOR_PERMUTATION_BASED_PROBLEMS
https://www.researchgate.net/publication/281015427_PARALLEL_HYBRID_OPTIMIZATION_METHODS_FOR_PERMUTATION_BASED_PROBLEMS
https://www.researchgate.net/publication/281015427_PARALLEL_HYBRID_OPTIMIZATION_METHODS_FOR_PERMUTATION_BASED_PROBLEMS
https://doi.org/10.1145/3449726.3463276
https://doi.org/10.1145/3449726.3463276
https://arxiv.org/abs/2105.00420
https://doi.org/10.1007/s00500-011-0754-8
https://link.springer.com/article/10.1007/s00500-011-0754-8
https://link.springer.com/article/10.1007/s00500-011-0754-8
https://doi.org/10.1145/3319619.3326865
https://doi.org/10.1145/3319619.3326865
https://doi.org/10.1145/3319619.3326865
https://doi.org/10.1109/CEC.2012.6256466
https://doi.org/10.1109/CEC.2012.6256466
https://doi.org/10.1002/spe.2459
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2459
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2459
https://www.ceitec.eu/cybernetics-and-robotics/rg390
https://www.ceitec.eu/cybernetics-and-robotics/rg390

BIBLIOGRAPHY BIBLIOGRAPHY

[84] Lazna, T., Fisera, O., Kares, J., Zalud, L., “Localization of ionizing radiation
sources via an autonomous robotic system”, Radiation Protection Dosimetry, vol. 186,
no. 2–3, 249–256, 2019, issn: 1742-3406. doi: 10.1093/rpd/ncz213. [Online].
Available: http://dx.doi.org/10.1093/rpd/ncz213.

[85] Gabrlik, P., Lazna, T., Jilek, T., Sladek, P., Zalud, L., “An automated heteroge-
neous robotic system for radiation surveys: Design and field testing”, Journal of
Field Robotics, vol. 38, no. 5, 657–683, 2021, issn: 1556-4967. doi: 10.1002/rob.
22010. [Online]. Available: http://dx.doi.org/10.1002/rob.22010.

[86] Pop, P. C., Cosma, O., Sabo, C., Sitar, C. P., “A comprehensive survey on the gen-
eralized traveling salesman problem”, European Journal of Operational Research,
2023, issn: 0377-2217. doi: 10.1016/j.ejor.2023.07.022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221723005581.

[87] Variable Neighborhood Search for the Electric Vehicle Routing Problem - github
repository, https://github.com/wolledav/VNS-EVRP-2020, Accessed: March 22,
2024, 2020.

[88] Resende, M. G., Ribeiro, C. C., Optimization by GRASP: Greedy Randomized
Adaptive Search Procedures. Springer New York, 2016, isbn: 9781493965304. doi:
10.1007/978-1-4939-6530-4. [Online]. Available: http://dx.doi.org/10.
1007/978-1-4939-6530-4.

[89] Duarte, A., Sánchez-Oro, J., Mladenović, N., Todosijević, R., “Variable Neighbor-
hood Descent”, in Handbook of Heuristics, Cham: Springer International Publish-
ing, 2018, pp. 341–367.

[90] Windras Mara, S. T., Norcahyo, R., Jodiawan, P., Lusiantoro, L., Rifai, A. P., “A
survey of adaptive large neighborhood search algorithms and applications”, Com-
puters & Operations Research, vol. 146, p. 105 903, 2022, issn: 0305-0548. doi: 10.
1016/j.cor.2022.105903. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0305054822001654.

[91] López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.,
“The rpackage irace Package: Iterated Racing for Automatic Algorithm Configu-
ration”, Operations Research Perspectives, vol. 3, pp. 43–58, 2016. doi: 10.1016/
j.orp.2016.09.002.

[92] Crognier, G., Tournebise, P., Ruiz, M., Panciatici, P., “Grid operation-based out-
age maintenance planning”, Electric Power Systems Research, vol. 190, p. 106 682,
2021, issn: 0378-7796. doi: 10.1016/j.epsr.2020.106682. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378779620304855.

[93] Cattaruzza, D., Labbé, M., Petris, M., Roland, M., Schmidt, M., “Exact and
Heuristic Solution Techniques for Mixed-Integer Quantile Minimization Problems”,
INFORMS Journal on Computing, 2024. [Online]. Available: https://hal.science/
hal-03665771.

[94] Gouvine, G., Mixed-Integer Programming for the ROADEF/EURO 2020 challenge,
2021. doi: 10.48550/ARXIV.2111.01047. [Online]. Available: https://arxiv.
org/abs/2111.01047.

136

https://doi.org/10.1093/rpd/ncz213
http://dx.doi.org/10.1093/rpd/ncz213
https://doi.org/10.1002/rob.22010
https://doi.org/10.1002/rob.22010
http://dx.doi.org/10.1002/rob.22010
https://doi.org/10.1016/j.ejor.2023.07.022
https://www.sciencedirect.com/science/article/pii/S0377221723005581
https://github.com/wolledav/VNS-EVRP-2020
https://doi.org/10.1007/978-1-4939-6530-4
http://dx.doi.org/10.1007/978-1-4939-6530-4
http://dx.doi.org/10.1007/978-1-4939-6530-4
https://doi.org/10.1016/j.cor.2022.105903
https://doi.org/10.1016/j.cor.2022.105903
https://www.sciencedirect.com/science/article/pii/S0305054822001654
https://www.sciencedirect.com/science/article/pii/S0305054822001654
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.epsr.2020.106682
https://www.sciencedirect.com/science/article/pii/S0378779620304855
https://hal.science/hal-03665771
https://hal.science/hal-03665771
https://doi.org/10.48550/ARXIV.2111.01047
https://arxiv.org/abs/2111.01047
https://arxiv.org/abs/2111.01047

BIBLIOGRAPHY BIBLIOGRAPHY

[95] Zholobova, A., Zholobov, Y., Polyakov, I., Petrosian, O., Vlasova, T., “An Indus-
try Maintenance Planning Optimization Problem Using CMA-VNS and Its Vari-
ations”, in Mathematical Optimization Theory and Operations Research: Recent
Trends, A. Strekalovsky, Y. Kochetov, T. Gruzdeva, and A. Orlov, Eds., Cham:
Springer International Publishing, 2021, pp. 429–443, isbn: 978-3-030-86433-0.

[96] Smith, A. E., “Proceedings of the 23rd International Conference of the Interna-
tional Federation of Operational Research Societies”, in Proceedings of the 23rd
International Conference of the International Federation of Operational Research
Societies, J. R. Vera and B. Fortz, Eds., ser. IFORS2023, International Federa-
tion of Operational Research Societies, 2023. doi: 10.1287/ifors.2023. [Online].
Available: http://dx.doi.org/10.1287/ifors.2023.

[97] Mansouri, M., Andreasson, H., Pecora, F., “Hybrid reasoning for multi-robot drill
planning in open-pit mines”, Acta Polytechnica, vol. 56, no. 1, p. 47, 2016, issn:
1210-2709. doi: 10.14311/app.2016.56.0047. [Online]. Available: http://dx.
doi.org/10.14311/APP.2016.56.0047.

[98] Dubins, L. E., “On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents”, American Journal
of Mathematics, vol. 79, no. 3, p. 497, Jul. 1957. doi: 10.2307/2372560. [Online].
Available: https://doi.org/10.2307/2372560.

[99] Řád doktorského studia Fakulty elektrotechnické Českého vysokého učeńı technického
v Praze, 1. změněné úplné zněńı účinné od 28. března 2018, https://intranet.
fel.cvut.cz/cz/rozvoj/rad- doktorskeho- studia_2018a.pdf, Accessed:
March 22, 2024.

137

https://doi.org/10.1287/ifors.2023
http://dx.doi.org/10.1287/ifors.2023
https://doi.org/10.14311/app.2016.56.0047
http://dx.doi.org/10.14311/APP.2016.56.0047
http://dx.doi.org/10.14311/APP.2016.56.0047
https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://intranet.fel.cvut.cz/cz/rozvoj/rad-doktorskeho-studia_2018a.pdf
https://intranet.fel.cvut.cz/cz/rozvoj/rad-doktorskeho-studia_2018a.pdf

	Acknowledgements
	Abstract
	List of Acronyms
	Introduction
	Related work
	Selected optimization methods
	Generic metaheuristic solvers and metaheuristic frameworks

	Path planning algorithm ensuring accurate localization of radiation sources
	The GRASP Metaheuristic for the Electric Vehicle Routing Problem
	The ALNS metaheuristic for the transmission maintenance scheduling
	Metaheuristic solver for problems with permutative representation
	The Hamiltonian Cycle and Travelling Salesperson problems with traversal-dependent edge deletion
	Where to place a pile?
	Results and Discussion
	Conclusion
	Author's publications
	Thesis core publications
	Related publications
	Supervised theses

	Bibliography

